Атом получивший положительный или отрицательный заряд. III

💖 Нравится? Поделись с друзьями ссылкой

3.1. Электрический заряд

Еще в древности люди обратили внимание на то, что потертый шерстью кусочек янтаря начинает притягивать к себе различные мелкие предметы: пылинки, ниточки и тому подобное. Вы сами можете легко убедиться, что пластмассовая расческа, потертая о волосы, начинает притягивать небольшие кусочки бумаги. Это явление называется электризацией , а силы, действующие при этом – электрическими силами . Оба названия происходят от греческого слова " электрон" , что означает " янтарь" .
При трении расчески о волосы или эбонитовой палочки о шерсть предметы заряжаются , на них образуются электрические заряды . Заряженные тела взаимодействуют друг с другом и между ними возникают электрические силы.
Электризоваться трением могут не только твердые тела, но и жидкости, и даже газы.
При электризации тел вещества, из которых состоят электризующиеся тела, в другие вещества не превращаются. Таким образом, электризация – физическое явление.
Существует два разных рода электрических зарядов. Совершенно условно они названы " положительным" зарядом и " отрицательным" зарядом (а можно было бы назвать их " черный" и " белый" , или " прекрасный" и " ужасный" , или как-то иначе).
Положительно заряженными называют тела, которые действуют на другие заряженные предметы так же, как стекло, наэлектризованное трением о шелк.
Отрицательно заряженными называют тела, которые действуют на другие заряженные предметы так же, как сургуч, наэлектризованный трением о шерсть.
Основное свойство заряженных тел и частиц: одноименно заряженные тела и частицы отталкиваются, а разноименно заряженные – притягиваются. В опытах с источниками электрических зарядов вы познакомитесь и с некоторыми другими свойствами этих зарядов: заряды могут " перетекать" с одного предмета на другой, накапливаться, между заряженными телами может происходить электрический разряд и так далее. Подробно эти свойства вы изучите в курсе физики.

3.2. Закон Кулона

Электрический заряд (Q или q ) – физическая величина, он может быть больше или меньше, и, следовательно, его можно измерять. Но непосредственно сравнивать заряды друг с другом физики пока не могут, поэтому сравнивают не сами заряды, а действие, которое заряженные тела оказывают друг на друга, или на другие тела, например, силу с которой одно заряженное тело действует на другое.

Силы (F), действующие на каждое из двух точечных заряженных тел противоположно направлены вдоль прямой, соединяющей эти тела. Их величины равны между собой, прямо пропорциональны произведению зарядов этих тел (q 1 ) и (q 2 ) и обратно пропорциональны квадрату расстояния (l) между ними.

Это соотношение носит название " закон Кулона" в честь открывшего его в 1785 г. французского физика Шарля Кулона (1763-1806). Важнейшая для химии зависимость кулоновских сил от знака заряда и расстояния между заряженными телами наглядно показана на рис. 3.1.

Единица измерений электрического заряда – кулон (определение в курсе физики). Заряд величиной в 1 Кл протекает через электрическую лампочку мощностью 100 ватт примерно за 2 секунды (при напряжении 220 В).

3.3. Элементарный электрический заряд

До конца XIX века природа электричества оставалась неясной, но многочисленные эксперименты привели ученых к выводу, что величина электрического заряда не может изменяться непрерывно. Было установлено, что существует наименьшая, далее неделимая порция электричества. Заряд этой порции получил название " элементарный электрический заряд" (обозначается буквой е ). Он оказался равен 1,6 . 10– 19 Кл. Это очень маленькая величина – через нить той же электрической лампочки за 1 секунду проходит почти 3 миллиарда миллиардов элементарных электрических зарядов.
Любой заряд является величиной, кратной элементарному электрическому заряду, поэтому элементарный электрический заряд удобно использовать в качестве единицы измерений малых зарядов. Таким образом,

1е = 1,6 . 10– 19 Кл.

На рубеже XIX и XX веков физики поняли, что носителем элементарного отрицательного электрического заряда является микрочастица, получившая название электрон (Джозеф Джон Томсон, 1897 г.). Носитель элементарного положительного заряда – микрочастица под названием протон – был обнаружен несколько позже (Эрнест Резерфорд, 1919 г.). Тогда же было доказано, что положительный и отрицательный элементарные электрические заряды равны по абсолютной величине

Таким образом, элементарный электрический заряд – это заряд протона.
С другими характеристиками электрона и протона вы познакомитесь в следующей главе.

Несмотря на то, что в состав физических тел входят заряженные частицы, в обычном состоянии тела незаряжены, или электронейтральны . Также электронейтральны и многие сложные частицы, например, атомы или молекулы. Суммарный заряд такой частицы или такого тела оказывается равным нулю потому, что число электронов и число протонов, входящих в состав частицы или тела, равны.

Тела или частицы становятся заряженными, если электрические заряды разделяются: на одном теле (или частице) оказывается избыток электрических зарядов одного знака, а на другом – другого. В химических явлениях электрический заряд какого-либо одного знака (положительный или отрицательный) не может ни появиться, ни исчезнуть, так как не могут появиться или исчезнуть носители элементарных электрических зарядов только одного знака.

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОСНОВНОЕ СВОЙСТВО ЗАРЯЖЕННЫХ ТЕЛ И ЧАСТИЦ, ЗАКОН КУЛОНА, ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
1.Как заряжается шелк при трении о стекло? А шерсть при трении о сургуч?
2.Какое число элементарных электрических зарядов составляет 1 кулон?
3.Определите силу, с который притягиваются друг к другу два тела с зарядами +2 Кл и –3 Кл, находящиеся друг от друга на расстоянии 0,15 м.
4.Два тела с зарядами +0,2 Кл и –0,2Кл находятся на расстоянии 1 см друг от друга. Определите силу с которой они притягиваются.
5.С какой силой отталкиваются друг от друга две частицы, несущие одинаковый заряд, равный +3 е , и находящиеся на расстоянии 2 Е? Значение константы в уравнении закона Кулона k = 9 . 10 9 Н. м 2 /Кл 2 .
6.С какой силой притягивается электрон к протону, если расстояние между ними 0,53 Е? А протон к электрону?
7.Два одноименно и одинаково заряженных шарика соединены непроводящей заряды нитью. Середина нити неподвижно закреплена. Нарисуйте, как расположатся в пространстве эти шарики в условиях, когда силой тяжести можно пренебречь.
8.Как в этих же условиях будут расположены в пространстве три таких же шарика, привязанных одинаковыми по длине нитями к одной опоре? А четыре?
Опыты по притяжению и отталкиванию заряженных тел.

Темы кодификатора ЕГЭ : электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда.

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.

Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд ).

2. Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы . Единицей измерения заряда является кулон (Кл).

Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные .

Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации ) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела всегда складывается из целого количества элементарных зарядов:

Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением . С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

Закон сохранения заряда

Вернёмся к примеру электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда , который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами :

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!

Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон ) превращается в две заряженные частицы - электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

Электрический заряд является физической величиной, которая присуща некоторым элементарным частицам. Он проявляет себя через силы притяжения и отталкивания между заряженными телами посредством электромагнитного поля. Рассмотрим физические свойства заряда и виды зарядов.

Общее представление об электрическом заряде

Материя, которая имеет отличный от нуля электрический заряд, активно взаимодействует с электромагнитным полем и, в свою очередь, создает это поле. Взаимодействие заряженного тела с электромагнитным полем является одним из четырех типов силовых взаимодействий, которые известны человеку. Говоря о зарядах и видах зарядов, следует отметить, что с точки зрения стандартной модели электрический заряд отражает способность тела или частицы обмениваться носителями электромагнитного поля - фотонами - с другим заряженным телом или электромагнитным полем.

Одна из важных характеристик различных видов заряда - сохранение их суммы в изолированной системе. То есть общий заряд сохраняется сколь угодно длительное время независимо от типа взаимодействия, которое имеет место внутри системы.

Электрический заряд не является непрерывным. В экспериментах Роберта Милликена была продемонстрирована дискретная природа электрического заряда. Виды зарядов, существующие в природе, могут быть положительными или отрицательными.

Положительные и отрицательные заряды

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки - "кирпичики", образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Единица измерения

Виды зарядов, как положительные, так и отрицательные, в международной системе единиц СИ измеряются в кулонах. Заряд в 1 кулон - это очень большой заряд, который определяется как проходящих за 1 секунду через поперечное сечение проводника при силе тока в нем, равной 1 ампер. Одному кулону соответствует 6,242*10 18 свободных электронов. Это означает, что заряд одного электрона равен -1/(6,242*10 18) = - 1,602*10 -19 кулона. Это же значение, только со знаком плюс, характерно для другого вида зарядов в природе - положительного заряда протона.

Краткая история электрического заряда

Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово "янтарь" в древнегреческом языке звучит как "электрон". Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как "электричество" и "электрический заряд". В своих работах Гилберт также смог различить магнитные и электрические явления.

Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века. Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены.

Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

Магнитный момент и электрический заряд

Виды заряда выделил еще Бенджамин Франклин. Их два: положительный и отрицательный. Два заряда одинакового знака отталкиваются, а противоположного - притягиваются.

С появлением квантовой механики и физики элементарных частиц было показано, что помимо электрического заряда частицы обладают магнитным моментом, который носит название спина. Благодаря электрическим и магнитным свойствам элементарных частиц в природе существует электромагнитное поле.

Принцип сохранения электрического заряда

В соответствии с результатами множества экспериментов, принцип сохранения электрического заряда гласит, что не существует ни какого-либо способа разрушения заряда, ни его создания из ничего, и что в любых электромагнитных процессах в изолированной системе полный электрический заряд сохраняется.

В результате процесса электризации общее количество протонов и электронов не изменяется, существует лишь разделение зарядов. Электрический заряд может появиться в какой-либо части системы, где раньше его не было, но общий заряд системы при этом все равно не изменится.

Плотность электрического заряда

Под плотностью заряда понимается его количество на единицу длины, площади или объема пространства. В связи с этим говорят о трех типах его плотности: линейной, поверхностной и объемной. Поскольку существует два вида заряда, плотность также может быть положительной и отрицательной.

Несмотря на то что электрический заряд квантован, то есть является дискретным, в ряде опытов и процессов количество его носителей настолько велико, что можно считать, что они распределены по телу равномерно. Это хорошее приближение позволяет получить ряд важных экспериментальных законов для электрических явлений.

Исследуя на крутильных весах поведение двух точечных зарядов, то есть таких, для которых расстояние между ними значительно превышает их размеры, Шарль Кулон в 1785 году открыл закон взаимодействия между электрическими зарядами. Этот закон ученый сформулировал следующим образом:

Величина каждой силы, с которой взаимодействуют два точечных заряда в покое, прямо пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния, разделяющего их. Силы взаимодействия направлены вдоль линии, которая соединяет заряженные тела.

Отметим, что закон Кулона от вида зарядов не зависит: изменение знака заряда лишь изменит направление действующей силы на противоположное, сохранив при этом ее модуль. Коэффициент пропорциональности в законе Кулона зависит от диэлектрической постоянной среды, в которой рассматриваются заряды.

Таким образом, формула для кулоновской силы записывается в следующем виде: F = k*q 1 *q 2 /r 2 , где q 1, q 2 - величины зарядов, r - расстояние между зарядами, k = 9*10 9 Н*м 2 /Кл 2 - коэффициент пропорциональности для вакуума.

Константа k через универсальную диэлектрическую постоянную ε 0 и диэлектрическую постоянную материала ε выражается следующим образом: k = 1/(4*pi*ε*ε 0), здесь pi - число пи, а ε > 1 для любой среды.

Закон Кулона не справедлив в следующих случаях:

  • когда заряженные частицы начинают двигаться, и особенно когда их скорости приближаются к около световым скоростям;
  • когда расстояние между зарядами мало по сравнению с их геометрическими размерами.

Интересно отметить, что математический вид закона Кулона совпадает с таковым для закона всемирного тяготения, в котором роль электрического заряда играет масса тела.

Способы передачи электрического заряда и электризация

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Все тела окружающего нас мира состоят из двух видов стабильных частиц - протонов, заряженных положительно, и электронов, имеющих такой же заряд е отрицательного знака. Число электронов равно числу протонов. Поэтому Вселенная электрически нейтральна.

Так как электрон и протон никогда (во всяком случае, за последние 14 миллиардов лет ) не распадаются, то Вселенная не может нарушить своей нейтральности какими-либо воздействиями со стороны человека. Все тела обычно также электрически нейтральны, т. е. содержат одинаковое число электронов и протонов.

Для того чтобы тело сделать заряженным, из него нужно уда-лить, перенеся на другое тело, или добавить к нему, взяв из другого тела, некоторое число N электронов или протонов. Заряд тела станет равным Ne. При этом необходимо помнить (о чем обычно забывают ), что такой же заряд обратного знака (Ne) неизбежно образуется на другом теле (или телах). Натирая шерстью эбонитовую палочку, мы заряжаем не только эбонит, но и шерсть, перенося с одного на другое часть электронов.

Утверждение о притяжении двух тел с одинаковыми разноименными зарядами по принципам верификации и фальсификации научно, так как может быть в принципе подтверждено или опровергнуто эксперимен-тально. Здесь опыт может быть поставлен чисто, без вовлечения третьих тел, простым перенесением части электронов или протонов с одного опытного тела на другое.

Совсем иная картина с утверждением об отталкивании одноименных зарядов. Дело в том, что только два , например положительных, заряда q1, q2 для проведения эксперимента не могут быть созданы , так как при попытке их создания всегда неизбежно появляется третий , отрицательный заряд q3 = -(qi + q2). Поэтому в опыте будут обязательно участвовать не два, а три заряда . Провести эксперимент с двумя одноименными зарядами в принципе невозможно.

Поэтому утверждение Кулона об отталкивании одноименных зарядов по упомянутым принципам ненаучно.

По той же причине невозможен и опыт с двумя зарядами разных знаков q1, - q2, если эти заряды не равны друг другу. Здесь также неизбежно появляется третий заряд q3 = q1 - q2, который участвует во взаимодействии и оказывает влияние на результирующую силу .

Наличие третьего заряда забывается и не учитывается слепыми сторонниками Кулона. Два тела с одинаковыми зарядами разных знаков могут быть созданы разрывом атомов на две заряженные части и переносом этих частей с одного тела на другое. При таком разрыве необходимо совершить работу и затратить энергию. Естественно, что заряженные части будут стремиться вернуться в исходное состояние с меньшей энергией и соединиться, т. е. должны притягиваться друг к другу.

С точки зрения близкодействия любое взаимодействие предполагает наличие обмена между взаимодействующими телами чем-то материальным, а мгновенное действие на расстоянии и телекинез невозможны. Электростатические взаимодействия между зарядами осуществляются постоянным электрическим полем. Мы не знаем что это такое, но можем с уверенностью утверждать, что поле материально, так как оно обладает энергией, массой, импульсом и конечной скоростью распространения.

Принятые для изображения электрического поля силовые линии выходят из одного заряда (положительного) и не могут обрываться в пустоте, а всегда входят в другой (отрицательный) заряд. Они как щупальцы тянутся от одного заряда к другому, соединяя их. Для уменьшения энергии системы зарядов объем, занимаемый полем, стремится к минимуму. Поэтому протянутые «щупальцы» электрического поля всегда стремятся к сокращению подобно упругим, натянутым при зарядке резинкам. Вот за счет этого сокращения и осуществляется притяжение разноименных зарядов. Силу притяжения можно измерить экспериментально. Она и дает закон Кулона.

Совсем другое дело в случае одноименных зарядов. Суммарное электрическое поле двух зарядов выходит из каждого из них и уходит в бесконечность, а контакта полей одного и другого зарядов не достигается. Упругие «щупальцы” одного заряда не достигают другого. Поэтому нет и прямого материального воздействия одного заряда на другой, им нечем взаимодействовать. Поскольку телекинез мы не признаем, то, следовательно, не может быть никакого отталкивания.

А как же тогда объяснить расхождение лепестков элероскопа и наблюдаемое в опытах Кулона отталкивание зарядов? Вспомним, что когда мы создаем для нашего опыта два положительных заряда, то в окружающем пространстве неизбежно образуем и отрицательный заряд.

Вот притяжение к нему ошибочно и принимается за отталкивание .

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества . Подобные действия называются электризацией .

Статическое электричество объясняется существованием в природе электрического заряда . Заряд является неотъемлемым свойством элементарных частиц . Заряд, который возникает на стекле при трении его о шелк, условно называют положительным , а заряд, возникающий на эбоните при трении о шерсть, - отрицательным .

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

.

Носителем отрицательного заряда является электрон, положительного - протон. Нейтрон - нейтральная частица, не имеет заряда.

Величина элементарного заряда - электрона или протона, имеет постоянное значение и равна

Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом . А если присоединится один электрон лишний - получим отрицательный ион . Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим - это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются , разноименные (положительный и отрицательный) - притягиваются

Точечный заряд - это материальная точка , которая имеет электрический заряд.

Закон сохранения электрического заряда

Замкнутая система тел в электричестве - это такая система тел, когда между внешними телами нет обмена электрическими зарядами.

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.

На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

1) Элементарный электрический заряд - электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда



Рассказать друзьям