Интегрирование элементарных функций. Первообразная

💖 Нравится? Поделись с друзьями ссылкой

На этой странице вы найдёте:

1. Собственно, таблицу первообразных — её можно скачать в формате PDF и распечатать;

2. Видео, посвящённое тому, как этой таблицей пользоваться;

3. Кучу примеров вычисления первообразной из различных учебников и контрольных работ.

В самом видео мы разберём множество задач, где требуется посчитать первообразные функций, зачастую довольно сложных, но главное — не являющихся степенными. Все функции, сведённые в таблицу, предложенную выше, необходимо знать наизусть, подобно производным. Без них невозможно дальнейшее изучение интегралов и их применение для решения практических задач.

Сегодня мы продолжаем заниматься первообразными и переходим у чуть более сложной теме. Если в прошлый раз мы рассматривали первообразные только от степенных функций и чуть более сложных конструкций, то сегодня мы разберем тригонометрию и многое другое.

Как я говорил на прошлом занятии, первообразные в отличие от производных, никогда не решаются «напролом» с помощью каких-либо стандартных правил. Более того, плохая новость состоит в том, что в отличие от производной, первообразная вообще может не считаться. Если мы напишем совершенно случайную функцию и попытаемся найти ее производную, то это с очень большой вероятностью у нас получится, а вот первообразная практически никогда в этом случае не посчитается. Но есть и хорошая новость: существует довольно обширный класс функций, называемых элементарными, первообразные от которых очень легко считаются. А все прочие более сложные конструкции, которые дают на всевозможных контрольных, самостоятельных и экзаменах, на самом деле, составляются из этих элементарных функций путем сложения, вычитания и других несложных действий. Первообразные таких функций давно посчитаны и сведены в специальные таблицы. Именно с такими функциями и таблицами мы будем сегодня работать.

Но начнем мы, как всегда, с повторения: вспомним, что такое первообразная, почему их бесконечно много и как определить их общий вид. Для этого я подобрал две простенькие задачки.

Решение легких примеров

Пример № 1

Сразу заметим, что $\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$ и вообще наличие $\text{ }\!\!\pi\!\!\text{ }$ сразу намекает нам, что искомая первообразная функции связана с тригонометрией. И, действительно, если мы посмотрим в таблицу, то обнаружим, что $\frac{1}{1+{{x}^{2}}}$ — не что иное как $\text{arctg}x$. Так и запишем:

Для того чтобы найти, необходимо записать следующее:

\[\frac{\pi }{6}=\text{arctg}\sqrt{3}+C\]

\[\frac{\text{ }\!\!\pi\!\!\text{ }}{6}=\frac{\text{ }\!\!\pi\!\!\text{ }}{3}+C\]

Пример № 2

Здесь также речь идет о тригонометрических функциях. Если мы посмотрим в таблицу, то, действительно, так и получится:

Нам нужно среди всего множества первообразных найти ту, которая проходит через указанную точку:

\[\text{ }\!\!\pi\!\!\text{ }=\arcsin \frac{1}{2}+C\]

\[\text{ }\!\!\pi\!\!\text{ }=\frac{\text{ }\!\!\pi\!\!\text{ }}{6}+C\]

Давайте окончательно запишем:

Вот так все просто. Единственная проблема состоит в том, для того чтобы считать первообразные простых функций, нужно выучить таблицу первообразных. Однако после изучения таблицы производных для вас, я думаю, это не будет проблемой.

Решение задач, содержащих показательную функцию

Для начала запишем такие формулы:

\[{{e}^{x}}\to {{e}^{x}}\]

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}\]

Давайте посмотрим, как это все работает на практике.

Пример № 1

Если мы посмотрим на содержимое скобок, то заметим, что в таблице первообразных нет такого выражения, чтобы ${{e}^{x}}$ стояло в квадрате, поэтому этот квадрат необходимо раскрыть. Для этого воспользуемся формулами сокращенного умножения:

Давайте найдем первообразную для каждого из слагаемых:

\[{{e}^{2x}}={{\left({{e}^{2}} \right)}^{x}}\to \frac{{{\left({{e}^{2}} \right)}^{x}}}{\ln {{e}^{2}}}=\frac{{{e}^{2x}}}{2}\]

\[{{e}^{-2x}}={{\left({{e}^{-2}} \right)}^{x}}\to \frac{{{\left({{e}^{-2}} \right)}^{x}}}{\ln {{e}^{-2}}}=\frac{1}{-2{{e}^{2x}}}\]

А теперь соберем все слагаемые в единое выражение и получим общую первообразную:

Пример № 2

На этот раз степень уже побольше, поэтому формула сокращенного умножения будет довольно сложной. Итак раскроем скобки:

Теперь от этой конструкции попробуем взять первообразную от нашей формулы:

Как видите, в первообразных показательной функции нет ничего сложного и сверхъестественного. Все один считаются через таблицы, однако внимательные ученики наверняка заметят, что первообразная ${{e}^{2x}}$ намного ближе просто к ${{e}^{x}}$ нежели к ${{a}^{x}}$. Так, может быть, существует какой-то более специальное правило, позволяющее, зная первообразную ${{e}^{x}}$, найти ${{e}^{2x}}$? Да, такое правило существует. И, более того, оно является неотъемлемой частью работы с таблицей первообразных. Его мы сейчас разберем на примере тех же самых выражений, с которыми мы только что работали.

Правила работы с таблицей первообразных

Еще раз выпишем нашу функцию:

В предыдущем случае мы использовали для решения следующую формулу:

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\operatorname{lna}}\]

Но сейчас поступим несколько иначе: вспомним, на каком сновании ${{e}^{x}}\to {{e}^{x}}$. Как уже и говорил, потому что производная ${{e}^{x}}$ — это не что иное как ${{e}^{x}}$, поэтому ее первообразная будет равна тому же самому ${{e}^{x}}$. Но проблема в том, что у нас ${{e}^{2x}}$ и ${{e}^{-2x}}$. Сейчас попытаемся найти производную ${{e}^{2x}}$:

\[{{\left({{e}^{2x}} \right)}^{\prime }}={{e}^{2x}}\cdot {{\left(2x \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

Давайте еще раз перепишем нашу конструкцию:

\[{{\left({{e}^{2x}} \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

\[{{e}^{2x}}={{\left(\frac{{{e}^{2x}}}{2} \right)}^{\prime }}\]

А это значит, что при нахождении первообразной ${{e}^{2x}}$ мы получим следующее:

\[{{e}^{2x}}\to \frac{{{e}^{2x}}}{2}\]

Как видите, мы получили тот же результат, что и ранее, однако не воспользовались формулой для нахождения ${{a}^{x}}$. Сейчас это может показаться глупостью: зачем усложнять вычисления, когда есть стандартная формула? Однако в чуть более сложных выражениях вы убедитесь, что этот прием очень эффективен, т.е. использование производных для нахождения первообразных.

Давайте в качестве разминки аналогичным способом найдем первообразную от ${{e}^{2x}}$:

\[{{\left({{e}^{-2x}} \right)}^{\prime }}={{e}^{-2x}}\cdot \left(-2 \right)\]

\[{{e}^{-2x}}={{\left(\frac{{{e}^{-2x}}}{-2} \right)}^{\prime }}\]

При вычислении наша конструкция запишется следующим образом:

\[{{e}^{-2x}}\to -\frac{{{e}^{-2x}}}{2}\]

\[{{e}^{-2x}}\to -\frac{1}{2\cdot {{e}^{2x}}}\]

Мы получили точно тот же результат, но пошли при этом по другому пути. Именно этот путь, который сейчас кажется нам чуть более сложным, в дальнейшем окажется более эффективным для вычисления более сложных первообразных и использование таблиц.

Обратите внимание! Это очень важный момент: первообразные как и производные можно посчитать множеством различных способов. Однако если все вычисления и выкладки будут равны, то ответ получится одним и тем же. Мы убедились в этом только что на примере ${{e}^{-2x}}$ — с одной стороны мы посчитали эту первообразную «напролом», воспользовавшись определением и посчитав ее с помощью преобразований, с другой стороны, мы вспомнили, что ${{e}^{-2x}}$ может быть представлено как ${{\left({{e}^{-2}} \right)}^{x}}$ и уже потом воспользовались первообразной для функции ${{a}^{x}}$. Тем не менее, после всех преобразований результат получился одним и тем же, как и предполагалось.

А теперь, когда мы все это поняли, пора перейти к чему-то более существенному. Сейчас мы разберем две простенькие конструкций, однако прием, который будет заложен при их решении, является более мощным и полезным инструментом, нежели простое «беганье» между соседними первообразными из таблицы.

Решение задач: находим первообразную функции

Пример № 1

Давайте сумму, которая стоит в числители, разложи на три отдельных дроби:

Это довольно естественный и понятный переход — у большинства учеников проблем с ним не возникает. Перепишем наше выражение следующим образом:

А теперь вспомним такую формулу:

В нашем случае мы получим следующее:

Чтобы избавиться от всех этих трехэтажных дробей, предлагаю поступить следующим образом:

Пример № 2

В отличие от предыдущей дроби в знаменателе стоит не произведение, а сумма. В этом случае мы уже не можем разделить нашу дробь на сумму нескольких простых дробей, а нужно каким-то образом постараться сделать так, чтобы в числителе стояло примерно такое же выражение как в знаменателе. В данном случае сделать это довольно просто:

Такая запись, которая на языке математики называется «добавление нуля», позволит нам вновь разделить дробь на два кусочка:

Теперь найдем то, что искали:

Вот и все вычисления. Несмотря на кажущуюся большую сложность, чем в предыдущей задаче, объем вычислений получился даже меньшим.

Нюансы решения

И вот в этом кроется основная сложность работы с табличными первообразными, особенно это заметно на второй задаче. Дело в том, что для того чтобы выделить какие-то элементы, которые легко считаются через таблицу, нам нужно знать, что конкретно мы ищем, и именно в поиске этих элементов и состоит все вычисление первообразных.

Другими словами, недостаточно просто зазубрить таблицу первообразных — нужно уметь видеть что-то, чего пока еще нет, но что подразумевал автор и составитель этой задачи. Именно поэтому многие математики, учителя и профессора постоянно спорят: «А что такое взятие первообразных или интегрирование — это просто инструмент либо это настоящее искусство?» На самом деле, лично на мой взгляд, интегрирование — это никакое не искусство — в нем нет ничего возвышенного, это просто практика и еще раз практика. И чтобы попрактиковаться, давайте решим еще три более серьезных примера.

Тренируемся в интегрировании на практике

Задача № 1

Запишем такие формулы:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

\[\frac{1}{x}\to \ln x\]

\[\frac{1}{1+{{x}^{2}}}\to \text{arctg}x\]

Давайте запишем следующее:

Задача № 2

Перепишем следующим образом:

Итого первообразная будет равна:

Задача № 3

Сложность этой задачи состоит в том, что в отличие от предыдущих функций сверху вообще отсутствует какая-либо переменная $x$, т.е. нам непонятно, что добавлять, вычитать, чтобы получить хоть что-то похожее на то, что стоит снизу. Однако, на самом деле, это выражение считается даже проще, чем любое выражение из предыдущих конструкций, потому что данную функцию можно переписать следующим образом:

Возможно, вы сейчас спросите: а почему эти функции равны? Давайте проверим:

Еще перепишем:

Немного преобразуем наше выражение:

И когда я все это объясняю своим ученикам, практически всегда возникает одна и та же проблема: с первой функцией все более-менее понятно, со второй тоже при везении или практике можно разобраться, но каким альтернативным сознанием нужно обладать, чтобы решить третий пример? На самом деле, не пугайтесь. Тот прием, который мы использовали при вычислении последней первообразной, называется «разложение функции на простейшие», и это очень серьезный прием, и ему будет посвящен отдельный видеоурок.

А пока предлагаю вернуться к тому, что мы только что изучили, а именно, к показательным функциям и несколько усложнить задачи с их содержанием.

Более сложные задачи на решение первообразных показательных функций

Задача № 1

Заметим следующее:

\[{{2}^{x}}\cdot {{5}^{x}}={{\left(2\cdot 5 \right)}^{x}}={{10}^{x}}\]

Чтобы найти первообразной этого выражения, достаточно просто воспользоваться стандартной формулой — ${{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}$.

В нашем случае первообразная будет такая:

Разумеется, на фоне той конструкции, которую мы решали только что, эта выглядит более простой.

Задача № 2

Опять же, несложно заметить, что эту функцию несложно разделить на два отдельных слагаемых — две отдельных дроби. Перепишем:

Осталось найти первообразную от каждого от этих слагаемых по вышеописанной формуле:

Несмотря на кажущуюся большую сложность показательных функций по сравнению со степенными, общий объем вычислений и выкладок получился гораздо проще.

Конечно, для знающих учеников то, что мы только что разобрали (особенно на фоне того, что мы разобрали до этого), может показаться элементарными выражениями. Однако выбирая именно две эти задачи для сегодняшнего видеоурока, я не ставил себе цель рассказать вам еще один сложный и навороченный прием — все, что я хотел вам показать, так это то, что не стоит бояться использовать стандартные приемы алгебры для преобразования исходных функций.

Использование «секретного» приема

В заключение хотелось бы разобрать еще один интересный прием, который, с одной стороны выходит за рамки того, что мы сегодня в основном разбирали, но, с другой стороны, он, во-первых, отнюдь не сложный, т.е. его могут освоить даже начинающие ученики, а, во-вторых, он довольно часто встречается на всевозможных контрольных и самостоятельных работах, т.е. знание его будет очень полезно в дополнение к знанию таблицы первообразных.

Задача № 1

Очевидно, что перед нами что-то очень похожее на степенную функцию. Как нам поступить в этом случае? Давайте задумаемся: $x-5$ отличается от $x$ не так уж и сильно — просто добавили $-5$. Запишем так:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{\left(\frac{{{x}^{5}}}{5} \right)}^{\prime }}=\frac{5\cdot {{x}^{4}}}{5}={{x}^{4}}\]

Давайте попробуем найти производную от ${{\left(x-5 \right)}^{5}}$:

\[{{\left({{\left(x-5 \right)}^{5}} \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\cdot {{\left(x-5 \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\]

Отсюда следует:

\[{{\left(x-5 \right)}^{4}}={{\left(\frac{{{\left(x-5 \right)}^{5}}}{5} \right)}^{\prime }}\]

В таблице нет такого значения, поэтому мы сейчас сами вывели эту формулу, используя стандартную формулу первообразной для степенной функции. Давайте так и запишем ответ:

Задача № 2

Многим ученикам, которые посмотрят на первое решение, может показаться, что все очень просто: достаточно заменить в степенной функции $x$ на линейное выражение, и все станет на свои места. К сожалению, все не так просто, и сейчас мы в этом убедимся.

По аналогии с первым выражением запишем следующее:

\[{{x}^{9}}\to \frac{{{x}^{10}}}{10}\]

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=10\cdot {{\left(4-3x \right)}^{9}}\cdot {{\left(4-3x \right)}^{\prime }}=\]

\[=10\cdot {{\left(4-3x \right)}^{9}}\cdot \left(-3 \right)=-30\cdot {{\left(4-3x \right)}^{9}}\]

Возвращаясь к нашей производной, мы можем записать:

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=-30\cdot {{\left(4-3x \right)}^{9}}\]

\[{{\left(4-3x \right)}^{9}}={{\left(\frac{{{\left(4-3x \right)}^{10}}}{-30} \right)}^{\prime }}\]

Отсюда сразу следует:

Нюансы решения

Обратите внимание: если в прошлый раз по сути ничего не поменялось, то во втором случае вместо $-10$ появилось $-30$. На что отличается $-10$ и $-30$? Очевидно, что на множитель $-3$. Вопрос: откуда он взялся? Присмотревшись можно увидеть, что она взялась в результате вычислений производной сложной функции — тот коэффициент, который стоял при $x$, появляется в первообразной внизу. Это очень важное правило, которое я изначально вообще не планировал разбирать в сегодняшнем видеоуроке, но без него изложение табличных первообразных было бы неполным.

Итак, давайте еще раз. Пусть есть наша основная степенная функция:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

А теперь вместо $x$ давайте подставим выражение $kx+b$. Что тогда произойдет? Нам нужно найти следующее:

\[{{\left(kx+b \right)}^{n}}\to \frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k}\]

На каком основании мы это утверждаем? Очень просто. Давайте найдем производную написанной выше конструкции:

\[{{\left(\frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k} \right)}^{\prime }}=\frac{1}{\left(n+1 \right)\cdot k}\cdot \left(n+1 \right)\cdot {{\left(kx+b \right)}^{n}}\cdot k={{\left(kx+b \right)}^{n}}\]

Это то самое выражение, которое изначально и было. Таким образом, эта формула тоже верна, и ею можно дополнить таблицу первообразных, а лучше просто запомнить всю таблицу.

Выводы из «секретного: приема:

  • Обе функции, которые мы только что рассмотрели, на самом деле, могут быть сведены к первообразным, указанным в таблице, путем раскрытия степеней, но если с четвертой степенью мы еще более-менее как-то справимся, то вот девятую степень я бы вообще не рискнул раскрывать.
  • Если бы мы раскрыли степени, то мы бы получили такой объем вычислений, что простая задача заняла бы у нас неадекватно большое количество времени.
  • Именно поэтому такие задачи, внутри которых стоят линейные выражения, не нужно решать «напролом». Как только вы встречаете первообразную, которая отличается от той, что в таблице, лишь наличием выражения $kx+b$ внутри, сразу вспоминайте написанную выше формулу, подставляйте ее в вашу табличную первообразную, и все у вас получится намного быстрее и проще.

Естественно, в силу сложности и серьезности этого приема мы еще неоднократно вернемся к его рассмотрению в будущих видеоуроках, но на сегодня у меня все. Надеюсь, этот урок действительно поможет тем ученикам, которые хотят разобраться в первообразных и в интегрировании.

В школе у многих не получается решить интегралы или возникают какие-либо трудности с ними. Данная статья поможет вам в этом разобраться, так как в ней вы найдете все таблицы интегралов .

Интеграл является одним из главных вычислений и понятием в математическом анализе. Его появление получилось от двух целей:
Первая цель - восстановить функцию с помощью ее производной.
Вторая цель - вычисление площади, находящейся на расстоянии от графика к функции f(x) на прямой где, а больше или равна х больше или равен b и ось абсцисс.

Данные цели подводят нас к определенным и неопределенным интегралам. Связь между данными интегралами лежит в поиске свойств и вычислении. Но все течет и все меняется со временем, находились новые пути решения, выявлялись дополнения тем самым приводя определенные и неопределенные интегралы к иным формам интегрирования.

Что такое неопределенный интеграл спросите Вы. Это первообразная функция F(x) одной переменной x в интервале а больше х больше b. называется любой функцией F(x), в данном интервале для любого обозначения х, производная равняется F(x). Понятно что F(x) первообразная для f(x) в промежутке а больше х больше b. Значит F1(x) = F(x) + C. С -является любым постоянным и первообразным для f(x) в данном интервале. Данное утверждение обратимо, для функции f(x) - 2 первообразные отличаются только постоянной. Опираясь на теорему интегрального исчисления получается, что каждая непрерывная в интервале a

Определенный интеграл понимается как предел в интегральных суммах, или в ситуации заданной функции f(x) определенной на некоторой прямой (а,b) имея на нем первообразную F, означающую разность ее выражений в концах данной прямой F(b) - F(a).

Для наглядности изучения данной темы, предлагаю посмотреть видео. В нем подробно рассказывается и показывается как находить интегралы.

Каждая таблица интегралов сама по себе очень полезна, так как помогает в решении конкретного вида интегралов.






Все возможные виды канцтоваров и не только. Вы можете приобрести через интернет-магазин v-kant.ru. Либо просто перейдите по ссылке Канцтовары Самара (http://v-kant.ru) качество и цены Вас приятно удивят.

В более раннем материале был рассмотрен вопрос нахождения производной и были показаны её различные применения: вычисление углового коэффициента касательной к графику, решение задач на оптимизацию, исследование функций на монотонность и экстремумы. $\newcommand{\tg}{\mathop{\mathrm{tg}}\nolimits}$ $\newcommand{\ctg}{\mathop{\mathrm{ctg}}\nolimits}$ $\newcommand{\arctg}{\mathop{\mathrm{arctg}}\nolimits}$ $\newcommand{\arcctg}{\mathop{\mathrm{arcctg}}\nolimits}$

Рисунок 1.

Так же была рассмотрена задача нахождения мгновенной скорости $v(t)$ с помощью производной по заранее известному пройденному пути, выражаемому функцией $s(t)$.

Рисунок 2.

Очень часто встречается и обратная задача, когда нужно найти путь $s(t)$, пройденный точкой за время $t$, зная скорость движения точки $v(t)$. Если вспомнить, мгновенная скорость $v(t)$ находится, как производная от функции пути $s(t)$: $v(t)=s’(t)$. Значит, чтобы решить обратную задачу, то есть вычислить путь, нужно найти функцию, производная которой будет равна функции скорости. Но мы-то знаем, что производная пути и есть скорость, то есть: $s’(t) = v(t)$. Скорость равна произведению ускорения на время: $v=at$. Нетрудно определить, что искомая функция пути будет иметь вид: $s(t) = \frac{at^2}{2}$. Но это не совсем полное решение. Полное решение будет иметь вид: $s(t)= \frac{at^2}{2}+C$, где $C$ – некоторая константа. Почему именно так, будет рассказано далее. А пока проверим правильность найденного решения: $s"(t)=\left(\frac{at^2}{2}+C\right)"=2\frac{at}{2}+0=at=v(t)$.

Стоит заметить, что нахождение пути по скорости является физическим смыслом первообразной.

Полученная функция $s(t)$ называется первообразной функции $v(t)$. Довольно интересное и необычное название, не правда ли. В нём кроется большой смысл, который объясняет суть данного понятия и ведёт к его пониманию. Можно заметить, что в нём заключены два слова «первый» и «образ». Они говорят сами за себя. То есть это та функция, которая является исходной для имеющейся у нас производной. А мы по этой производной ищем ту функцию, которая была в начале, была «первой», «первым образом», то есть первообразную. Её иногда также называют примитивной функцией или антипроизводной.

Как нам уже известно, процесс нахождения производной называется дифференцированием. А процесс нахождения первообразной называется интегрированием. Операция интегрирования является обратной для операции дифференцирования. Верно и обратное утверждение.

Определение. Первообразной для функции $f(x)$ на некотором интервале называется такая функция $F(x)$, производная которой равна этой функции $f(x)$ для всех $x$ из указанного интервала: $F’(x)=f(x)$.

У кого-то может возникнуть вопрос: откуда в определении взялись $F(x)$ и $f(x)$, если изначально речь шла о $s(t)$ и $v(t)$. Дело в том, что $s(t)$ и $v(t)$ – частные случаи обозначения функций, имеющие в данном случае конкретный смысл, то есть это функция времени и функция скорости соответственно. То же самое и с переменной $t$ – она обозначает время. А $f$ и $x$ – традиционный вариант общего обозначения функции и переменной соответственно. Стоит обратить особое внимание на обозначение первообразной $F(x)$. Во-первых, $F$ – заглавная. Первообразные обозначаются заглавными буквами. Во-вторых, буквы совпадают: $F$ и $f$. То есть, для функции $g(x)$ первообразная будет обозначаться $G(x)$, для $z(x)$ – $Z(x)$. Вне зависимости от обозначений правила нахождения первообразной функции всегда одинаковы.

Рассмотрим несколько примеров.

Пример 1. Доказать, что функция $F(x)=\frac{1}{5}\sin5x$ является первообразной функции $f(x)=\cos5x$.

Для доказательства воспользуемся определением, а точнее тем фактом, что $F’(x)=f(x)$, и найдём производную функции $F(x)$: $F’(x)=(\frac{1}{5} \sin5x)’=\frac{1}{5}\cdot 5\cos5x= \cos5x$. Значит $F(x)=\frac{1}{5} \sin5x$ является первообразной $f(x)=\cos5x$. Что и требовалось доказать.

Пример 2. Найти, каким функциям соответствуют следующие первообразные: а) $F(z)=\tg z$; б) $G(l) = \sin l$.

Чтобы найти искомые функции, вычислим их производные:
а) $F’(z)=(\tg z)’=\frac{1}{\cos^2 z}$;
б) $G(l) = (\sin l)’ = \cos l$.

Пример 3. Какой будет первообразная для $f(x)=0$?
Воспользуемся определением. Подумаем, какая функция может иметь производную, равную $0$. Вспоминая таблицу производных, получаем, что любая постоянная будет иметь такую производную. Получаем, что искомая нами первообразная: $F(x)= C$.

Полученное решение можно объяснить геометрически и физически. Геометрически оно означает, что касательная к графику $y=F(x)$ горизонтальна в каждой точке этого графика и, значит, совпадает с осью $Ox$. Физически объясняется тем, что точка, имеющая скорость, равную нулю, остаётся на месте, то есть пройденный ею путь неизменен. Исходя из этого можно сформулировать следующую теорему.

Теорема. (Признак постоянства функций ). Если на некотором промежутке $F’(x) = 0$, то функция $F(x)$ на этом промежутке постоянна.

Пример 4. Определить, первообразными каких функций являются функции а) $F_1 = \frac{x^7}{7}$; б) $F_2 = \frac{x^7}{7} – 3$; в) $F_3 = \frac{x^7}{7} + 9$; г) $F_4 = \frac{x^7}{7} + a$, где $a$ – некоторое число.
Используя определение первообразной, делаем вывод, что для решения этого задания нам нужно вычислить производные данных нам первообразных функций. При вычислении помним о том, что производная постоянной, то есть любого числа, равна нулю.
а) $F_1 =(\frac{x^7}{7})"= 7 \cdot \frac{x^6}{7} = x^6$;
б) $F_2 =\left(\frac{x^7}{7} – 3\right)"=7 \cdot \frac{x^6}{7}= x^6$;
в) $F_3 =(\frac{x^7}{7} + 9)’= x^6$;
г) $F_4 =(\frac{x^7}{7} + a)’ = x^6$.

Что мы видим? Несколько разных функций являются первообразными одной и той же функции. Это говорит о том, что у любой функции существует бесконечно много первообразных, и они имеют вид $F(x) + C$, где $C$ – произвольная константа. То есть операция интегрирования является многозначной в отличие от операции дифференцирования. Сформулируем на основании этого теорему, описывающую основное свойство первообразных.

Теорема. (Основное свойство первообразных ). Пусть функции $F_1$ и $F_2$ являются первообразными функции $f(x)$ на некотором промежутке. Тогда для всех значений из этого промежутка справедливо следующее равенство: $F_2=F_1+C$, где $C$ – некоторая константа.

Факт наличия бесконечного множества первообразных можно интерпретировать геометрически. С помощью параллельного переноса вдоль оси $Oy$ можно получить друг из друга графики двух любых первообразных для $f(x)$. В этом заключается геометрический смысл первообразной.

Очень важно обратить внимание на то, что выбором константы $C$ можно добиться прохождения графика первообразной через определённую точку.

Рисунок 3.

Пример 5. Найти первообразную для функции $f(x)=\frac{x^2}{3}+1$, график которой проходит через точку $(3; 1)$.
Найдём сначала все первообразные для $f(x)$: $F(x)=\frac{x^3}{9}+x + C$.
Далее найдём такое число C, при котором график $y=\frac{x^3}{9}+x + C$ будет проходит через точку $(3; 1)$. Для этого подставим координаты точки в уравнение графика и решим его относительно $C$:
$1= \frac{3^3}{9}+3 + C$, $C=-5$.
Получили график $y=\frac{x^3}{9}+x-5$, который соответствует первообразной $F(x)=\frac{x^3}{9}+x-5$.

Таблица первообразных

Таблицу формул для нахождения первообразных можно составить, используя формулы нахождения производных.

Таблица первобразных
Функции Первообразные
$0$ $C$
$1$ $x+C$
$a\in R$ $ax+C$
$x^n, n\ne1$ $\displaystyle \frac{x^{n+1}}{n+1}+C$
$\displaystyle \frac{1}{x}$ $\ln|x|+C$
$\sin x$ $-\cos x+C$
$\cos x$ $\sin x+C$
$\displaystyle \frac{1}{\sin^2 x}$ $-\ctg x+C$
$\displaystyle \frac{1}{\cos^2 x}$ $\tg x+C$
$e^x$ $e^x+C$
$a^x, a>0, a\ne1$ $\displaystyle \frac{a^x}{\ln a} +C$
$\displaystyle \frac{1}{\sqrt{1-x^2}}$ $\arcsin x+C$
$\displaystyle -\frac{1}{\sqrt{1-x^2}}$ $\arccos x+C$
$\displaystyle \frac{1}{1+x^2}$ $\arctg x+C$
$\displaystyle -\frac{1}{1+x^2}$ $\arcctg x+C$

Проверить правильность составления таблицы можно следующим образом: для каждого множества первообразных, находящегося в правом столбце найти производную, в результате чего получатся соответствующие функции, стоящие в левом столбце.

Некоторые правила нахождения первообразных

Как известно, многие функции имеют более сложный вид, нежели указанные в таблице первообразных, и могут представлять собой любое произвольное сочетание сумм и произведений функций из этой таблицы. И тут возникает вопрос, как вычислять первообразные подобных функций. К примеру, из таблицы мы знаем, как вычислить первообразные $x^3$, $\sin x$ и $10$. А как, например, вычислить первообразную $x^3-10\sin x$? Забегая вперёд, стоит отметить, что она будет равна $\frac{x^4}{4}+10\cos x$.
1. Если $F(x)$ первообразная для $f(x)$, $G(x)$ – для $g(x)$, то для $f(x)+g(x)$ первообразная будет равна $F(x)+G(x)$.
2. Если $F(x)$ является первообразной для $f(x)$ и $a$ – константа, то для $af(x)$ первообразной будет $aF(x)$.
3. Если для $f(x)$ первообразной является $F(x)$, $a$ и $b$ – константы, то $\frac{1}{a} F(ax+b)$ первообразная для $f(ax+b)$.
Используя полученные правила мы можем расширить таблицу первообразных.

Функции Первообразные
$(ax+b)^n, n\ne1, a\ne0$ $\displaystyle \frac{(ax+b)^n}{a(n+1)} +C$
$\displaystyle \frac{1}{ax+b}, a\ne0$ $\displaystyle \frac{1}{a}\ln|ax+b|+C$
$e^{ax+b}, a\ne0$ $\displaystyle \frac{1}{a} e^{ax+b}+C$
$\sin(ax+b), a\ne0$ $\displaystyle -\frac{1}{a}\cos(ax+b)+C$
$\cos(ax+b), a\ne0$ $\displaystyle \frac{1}{a}\sin(ax+b)+C$

Пример 5. Найти первообразные для:

а) $\displaystyle 4x^3+10x^7$;

б) $\displaystyle \frac{6}{x^5} -\frac{2}{x}$;

в) $\displaystyle 5\cos x+\sin(3x+15)$;

г) $\displaystyle \sqrt{x}-2\sqrt{x}$.

а) $4\frac {x^{3+1}}{3+1}+10\frac{x^{7+1}}{7+1}+C=x^4+\frac{5}{4} x^8+C$;

б) $-\frac{3}{2x^4} -2\ln|x|+C$;

в) $5 \sin x - \frac{1}{3}\cos(3x + 15) + C$;

г) $\frac{2}{3}x\sqrt{x} - \frac{3}{2} x\sqrt{x} + C$.

Перечислим интегралы от элементарных функций, которые иногда называют табличными:

Любую из приведенных выше формул можно доказать, взяв производную от правой части (в результате будет получены подынтегральная функция).

Методы интегрирования

Рассмотрим некоторые основные методы интегрирования. К ним относятся:

1. Метод разложения (непосредственного интегрирования ).

Этот методоснован на непосредственном применении табличных интегралов, а также на применении свойств 4 и 5 неопределенного интеграла (т.е. на выносе за скобку постоянного сомножителя и/или представления подынтегральной функции в виде суммы функций – разложения подынтегральной функции на слагаемые).

Пример 1. Например, для нахождения(dx/x 4) можно непосредственно воспользоваться табличным интегралом дляx n dx. В самом деле,(dx/x 4) =x -4 dx=x -3 /(-3) +C= -1/3x 3 +C.

Рассмотрим еще несколько примеров.

Пример 2. Для нахождениявоспользуемся тем же интегралом:

Пример 3. Для нахождениянадо взять

Пример 4. Чтобы найти, представим подынтегральную функцию в видеи используем табличный интеграл для показательной функции:

Рассмотрим использование выноса за скобку постоянного сомножителя.

Пример 5. Найдем, например. Учитывая, что, получим

Пример 6. Найдем. Поскольку, воспользуемся табличным интеграломПолучим

В следующих двух примерах также можно использовать вынос за скобки и табличные интегралы:

Пример 7.

(используем и);

Пример 8.

(используем и).

Рассмотрим более сложные примеры, в которых используется интеграл суммы.

Пример 9. Например, найдем
. Для применения метода разложения в числителе используем формулу куба суммы  , а затем полученный многочлен почленно разделим на знаменатель.

=((8x 3/2 + 12x+ 6x 1/2 + 1)/(x 3/2))dx=(8 + 12x -1/2 + 6/x+x -3/2)dx= 8dx+ 12x -1/2 dx+ + 6dx/x+x -3/2 dx=

Следует отметить, что в конце решения записана одна общая постоянная С (а не отдельные при интегрировании каждого слагаемого). В дальнейшем также предлагается опускать в процессе решения постоянные от интегрирования отдельных слагаемых до тех пор, пока выражение содержит хотя бы один неопределенный интеграл (будем записывать одну постоянную в конце решения).

Пример 10. Найдем. Для решения этой задачи разложим на множители числитель (после этого удастся сократить знаменатель).

Пример 11. Найдем. Здесь можно использовать тригонометрические тождества.

Иногда, чтобы разложить выражение на слагаемые, приходится применять более сложные приемы.

Пример 12. Найдем. В подынтегральной функции выделим целую часть дроби. Тогда

Пример 13. Найдем

2. Метод замены переменной (метод подстановки)

Метод основан на следующей формуле: f(x)dx=f((t))`(t)dt, где x =(t) - функция, дифференцируемая на рассматриваемом промежутке.

Доказательство. Найдем производные по переменной tот левой и правой частей формулы.

Отметим, что в левой части находится сложная функция, промежуточным аргументом которой является x = (t). Поэтому, чтобы дифференцировать ее поt, сначала дифференцируем интеграл по x, а затем возмем производную от промежуточного аргумента поt.

( f(x)dx)` t = ( f(x)dx)` x *x` t = f(x) `(t)

Производная от правой части:

(f((t))`(t)dt)` t =f((t))`(t) =f(x)`(t)

Так как эти производные равны, по следствию из теоремы Лагранжа левая и правая части доказываемой формулы отличаются на некоторую постоянную. Поскольку сами неопределенные интегралы определены с точностью до неопределенного постоянного слагаемого, то указанную постоянную в окончательной записи можно опустить. Доказано.

Удачная замена переменной позволяет упростить исходный интеграл, а в простейших случаях свести его к табличному. В применении этого метода различают методы линейной и нелинейной подстановки.

а) Метод линейной подстановки рассмотрим на примере.

Пример 1.
. Пустьt= 1 – 2x, тогда

dx=d(½ - ½t) = - ½dt

Следует отметить, что новую переменную можно не выписывать явно. В таких случаях говорят о преобразовании функции под знаком дифференциала или о введении постоянных и переменных под знак дифференциала, - т.е. о неявной замене переменной .

Пример 2. Например, найдемcos(3x + 2)dx. По свойствам дифференциала dx = (1/3)d(3x) = (1/3)d(3x + 2), тогдаcos(3x + 2)dx =(1/3)cos(3x + 2)d(3x + + 2) = (1/3)cos(3x + 2)d(3x + 2) = (1/3)sin(3x + 2) +C.

В обоих рассмотренных примерах для нахождения интегралов была использована линейная подстановка t=kx+b(k0).

В общем случае справедлива следующая теорема.

Теорема о линейной подстановке . ПустьF(х) - некоторая первообразная для функцииf(х). Тогдаf(kx+b)dx= (1/k)F(kx+b) +C, где k и b - некоторые постоянные,k0.

Доказательство.

По определению интеграла f(kx+b)d(kx+b) =F(kx+b) +C. Hod(kx+b)= (kx+b)`dx=kdx. Вынесем постоянный множительkза знак интеграла:kf(kx+b)dx=F(kx+b) +C. Теперь можно разделить левую и правую части равенства наkи получить доказываемое утверждение с точностью до обозначения постоянного слагаемого.

Данная теорема утверждает, что если в определение интеграла f(x)dx= F(x) + C вместо аргумента х подставить выражение (kx+b), то это приведет к появлению дополнительного множителя 1/kперед первообразной.

С использованием доказанной теоремы решим следующие примеры.

Пример 3.

Найдем . Здесьkx+b= 3 –x, т.е.k= -1,b= 3. Тогда

Пример 4.

Найдем. Здесьkx+b= 4x+ 3, т.е.k= 4,b= 3. Тогда

Пример 5.

Найдем . Здесьkx+b= -2x+ 7, т.е.k= -2,b= 7. Тогда

.

Пример 6. Найдем
. Здесьkx+b= 2x+ 0, т.е.k= 2,b= 0.

.

Сравним полученный результат с примером 8, который был решен методом разложения. Решая эту же задачу другим методом, мы получили ответ
. Сравним полученные результаты:. Таким образом, эти выражения отличаются друг от друга на постоянное слагаемое, т.е. полученные ответы не противоречат друг другу.

Пример 7. Найдем
. Выделим в знаменателе полный квадрат.

В некоторых случаях замена переменной не сводит интеграл непосредственно к табличному, но может упростить решение, сделав возможным применение на последующем шаге метода разложения.

Пример 8. Например, найдем. Заменимt=x+ 2, тогдаdt=d(x+ 2) =dx. Тогда

,

где С = С 1 – 6 (при подстановке вместоtвыражения (x+ 2) вместо первых двух слагаемых получим ½x 2 -2x– 6).

Пример 9. Найдем
. Пустьt= 2x+ 1, тогдаdt= 2dx;dx= ½dt;x= (t– 1)/2.

Подставим вместо tвыражение (2x+ 1), раскроем скобки и приведем подобные.

Отметим, что в процессе преобразований мы перешли к другому постоянному слагаемому, т.к. группу постоянных слагаемых в процессе преобразований можно было опустить.

б) Метод нелинейной подстановки рассмотрим на примере.

Пример 1.
. Пустьt= -x 2 . Далее можно было бы выразить х черезt, затем найти выражение для dxи реализовать замену переменной в искомом интеграле. Но в данном случае проще поступить по-другому. Найдемdt=d(-x 2) = -2xdx. Отметим, что выражениеxdxявляется сомножителем подынтегрального выражения искомого интеграла. Выразим его из полученного равенстваxdx= - ½dt. Тогда

Основные формулы и методы интегрирования. Правило интегрирования суммы или разности. Вынесение постоянной за знак интеграла. Метод замены переменной. Формула интегрирования по частям. Пример решения задачи.

Ниже перечислены четыре основных метода интегрирования.

1) Правило интегрирования суммы или разности.
.
Здесь и далее u, v, w - функции от переменной интегрирования x .

2) Вынесение постоянной за знак интеграла.
Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла.

3) Метод замены переменной.
Рассмотрим неопределенный интеграл .
Если удастся подобрать такую функцию φ(x) от x , так что
,
то, выполнив замену переменной t = φ(x) , имеем
.

4) Формула интегрирования по частям.
,
где u и v - это функции от переменной интегрирования.

Конечная цель вычисления неопределенных интегралов - это, путем преобразований, привести заданный интеграл к простейшим интегралам, которые называются табличными. Табличные интегралы выражаются через элементарные функции по известным формулам.
См. Таблица интегралов >>>

Пример

Вычислить неопределенный интеграл

Решение

Замечаем, что подынтегральная функция является суммой и разностью трех членов:
, и .
Применяем метод 1 .

Далее замечаем, что подынтегральные функции новых интегралов умножены на постоянные 5, 4, и 2 , соответственно. Применяем метод 2 .

В таблице интегралов находим формулу
.
Полагая n = 2 , находим первый интеграл.

Перепишем второй интеграл в виде
.
Замечаем, что . Тогда

Применяем третий метод. Делаем замену переменной t = φ(x) = ln x .
.
В таблице интегралов находим формулу

Поскольку переменная интегрирования может обозначаться любой буквой, то

Перепишем третий интеграл в виде
.
Применяем формулу интегрирования по частям.
Положим .
Тогда
;
;

;
;
.



Рассказать друзьям