Упрощение дробных выражений. Преобразование выражений

💖 Нравится? Поделись с друзьями ссылкой

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе - это целая часть дроби. Цифра после запятой - числитель будущей дроби. Если после запятой однозначное число - в знаменателе будет 10, если двухзначное - 100, трехзначное - 1000 и т.д. Некоторые полученные дроби можно сократить . В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 ... В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!
Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз "3" вмещается в "23". Или 23 делим на 3 на калькуляторе, целое число до запятой - искомое. Это "7". Далее определяем числитель уже будущей дроби: полученную "7" умножаем на знаменатель "3" и из числителя "23" вычитаем полученное. Как бы находим то лишнее, что остается от числителя "23", если изъять максимальное количество "3". Знаменатель оставляем без изменения. Все сделано, записываем результат

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

В школе VIII вида учащиеся знакомятся со следующими преоб­разованиями дробей: выражением дроби в более крупных долях (6-й класс), выражением неправильной дроби целым или смешан­ным числом (6-й класс), выражением дробей в одинаковых долях (7-й класс), выражением смешанного числа неправильной дробью (7-й класс).


Выражение неправильной дроби целым или смешанным числом

Изучение данного материала следует начать с задания: взять 2 равных круга и каждый из них разделить на 4 равные доли, подсчи­тать количество четвертых долей (рис. 25). Далее предлагается записать это количество дробью . Затем четвертые доли при-

кладываются друг к другу и ученики убеждаются, что получился целый круг. Следовательно,К четырем четвертям добавляет-

ся последовательно еще по и ученики записывают:

Учитель обращает внимание учащихся на то, что во всех рас­смотренных случаях они брали неправильную дробь, а в результа­те преобразования получали или целое, или смешанное число, т. е. выражали неправильную дробь целым или смешанным чис­лом. Далее надо стремиться к тому, чтобы учащиеся самостоятель­но определили, каким арифметическим действием это преобразова­ние можно выполнить. Яркими примерами, приводящими к ответу на вопрос, являются: Вывод: чтобы

выразить неправильную дробь целым или смешанным числом, нужно числитель дроби разделить на знаменатель, частное запи­сать целым числом, остаток записать в числитель, а знаменатель оставить тот же. Так как правило громоздкое, совсем не обяза­тельно, чтобы учащиеся заучивали его наизусть. Они должны уметь последовательно рассказать о действиях при выполнении данного преобразования.

Перед тем как познакомить учащихся с выражением непра­вильной дроби целым или смешанным числом, целесообразно по­вторить с ними деление целого числа на целое с остатком.

Закреплению нового для учащихся преобразования способству­ет решение задач жизненно-практического характера, например:

«В вазе лежит девять четвертых долей апельсина. Сколько целых апельсинов можно сложить из этих долей? Сколько четвер­тых долей останется?»

Выражение целого и смешанного числа неправильной дробью

Знакомству учащихся с этим новым преобразованием должно предшествовать решение задач, например:

«2 равных по длине куска ткани, имеющих форму квадрата, разрезали на 4 равные части. Из каждой такой части сшили платок. Сколько получилось платков?» .

Далее учитель предлагает учащимся выполнитьтакое задание: «Возьмите целый круг и еще половину круга, равного по разме­ру первому. Разрежьте целый круг пополам. Сколько всего поло­винполучилось? Запишите: было круга, стало круга.

Таким образом, опираясь на наглядно-практическую основу, рассматриваем еще ряд примеров. В рассматриваемых примерах учащимся предлагается сравнить исходное число (смешанное или целое) и число, которое получилось после преобразования (непра­вильная дробь).

Чтобы познакомить учеников с правилом выражения целого и смешанного числа неправильной дробью, надо привлечь их внима­ние к сравнению знаменателей смешанного числа и неправильной дроби, а также к тому, как получается числитель, например:

будет 15/4. В итоге формулируется правило: чтобы смешанное число выразить неправильной дробью, надо знаменатель умножить на целое число, прибавить к произведению числитель и сумму запи­сать числителем, а знаменатель оставить без изменения.



Вначале нужно упражнять учащихся в выражении неправиль­ной дробью единицы, затем любого другого целого числа с указа­нием знаменателя, а уже затем смешанного числа-


Основное свойство дроби 1

Понятие неизменяемости дроби при одновременном увеличении или уменьшении ее членов, т. е. числителя и знаменателя, усваи­вается учащимися школы VIII вида с большим трудом. Это поня­тие необходимо вводить на наглядном и дидактическом материале, причем важно, чтобы учащиеся не только наблюдали за деятель­ностью учителя, но и сами активно работали с дидактическим материалом и на основе наблюдений и практической деятельности приходили к определенным выводам, обобщению.

Например, учитель берет целую репу, делит ее на 2 равные части и спрашивает: «Что получили при делении целой репы пополам? (2 половины.) Покажите репы. Разрежем (разделим) половину репы еще на 2 равные части. Что получим? Запишем: Сравним числители и знаменатели этих дробей. Во сколько

раз увеличился числитель? Во сколько раз увеличился знамена­тель? Во сколько раз увеличились и числитель, и знаменатель? Изменилась ли дробь? Почему не изменилась? Какими стали доли: крупнее или мельче? Увеличилось или уменьшилось число долей?»

Затем все учащиеся делят круг на 2 равные части, каждую половину делят еще на 2 равные части, каждую четверть еще на 2 равные части и т. д. и записывают: и т. д. Потом

устанавливают, во сколько раз увеличился числитель и знамена­тель дроби, изменилась ли дробь. Затем чертят отрезок и делят его последовательно на 3, 6, 12 равных частей и записывают:

При сравнении дробей обнаруживается, что

числитель и знаменатель дроби увеличивается в одно и то же число раз, дробь от этого не изменяется.

После рассмотрения ряда примеров следует предложить уча­щимся ответить на вопрос: «Изменится ли дробь, если числитель

Некоторые знания по теме «Обыкновенные дроби» исключаются из учебных программ по математике в коррекционных школах VIII вида, но они сообщаются учащимся в школах для детей с задержкой психического развития, в классах выравнивания для детей, испытывающих трудности в обучении математике. В данном учебнике параграфы, где дается методика изучения этого материала, обозначены звездочкой (*).


и знаменатель дроби умножить на одно и то же число (увеличить в одно и то же число раз)?» Кроме того, надо попросить учащихся самим привести примеры.

Аналогичные примеры приводятся при рассмотрении уменьше­ния числителя и знаменателя в одно и то же число раз (числитель и знаменатель делятся на одно то же число). Например, круг делят на 8 равных частей, берут 4 восьмые доли круга,

укрупнив доли, берут четвертые, их будет 2. Укрупнив доли, берут вторые. Их будет Сравнивают последовательно

числители и знаменатели этих дробей, отвечая на вопросы: «Во сколько раз уменьшается числитель и знаменатель? Изменится ли дробь?*.

Хорошим пособием являются полосы, разделенные на 12, 6, 3 равные части (рис. 26).

На основании рассмотренных примеров учащиеся могут сде­лать вывод: дробь не изменится, если числитель и знаменатель дроби разделить на одно и то же число (уменьшить в одно и то же число раз). Затем дается обобщенный вывод - основное свойство дроби: дробь не изме­нится, если числитель и знаменатель дроби увеличить или умень­шить в одно и то же число раз.

Сокращение дробей

Предварительно необходимо готовить учащихся к этому преоб­разованию дробей. Как известно, сократить дробь - это значит числитель и знаменатель дроби разделить на одно и то же число. Но делителем должно быть такое число, которое дает в ответе несократимую дробь.

За месяц-полтора до ознакомления учащихся с сокращением дробей проводится подготовительная работа - предлагается из таблицы умножения назвать два ответа, которые делятся на одно и то же число. Например: «Назовите два числа, которые делятся на 4». (Сначала учащиеся смотрят 1 в таблицу, а потом называют эти числа по памяти.) Они называют и числа, и результаты их деления на 4. Затем учитель предлагает ученикам для дроби, 3


например подобрать делитель - для числителя и знаменателя (опорой для выполнения такого действия является таблица умно­жения).

какую таблицу надо посмотреть? На какое число можно разделить 5 и 15?) Выясняется, что при делении числителя и знаменателя дроби на одно и то же число величина дроби не изменилась (это можно показать на полоске, отрезке, круге), только стали круп­нее доли:Вид дроби стал проще. Учащиеся подводятся к выводу правиласокращения дробей.

Учащимся школы VIII вида часто оказывается трудно подо­брать наибольшее число, на которое делится и числитель, и знаменатель дроби. Поэтому нередко наблюдаются ошибки такого характера, как 4/12=2/6 т. е. ученик не нашел наибольший общий

делитель для чисел4 и 12. Поэтому на первых порах можно разрешить постепенное деление, т. е. но при этом спрашивать, на какое число разделили числитель и знаменатель дроби сначала, на какое число потом и затем на какое число сразу можно было разделить числитель и знаменатель дроби. Такие вопросы помогают учащимся постепенно отыскивать наибольший общий делитель числителя и знаменателя дроби.

Приведение дробей к наименьшему общему знаменателю*

Приведение дробей к наименьшему общему знаменателю нужно рассматривать не как самоцель, а как преобразование, необходимое для сравнения дробей, а затем и для выполнения действий сложения и вычитания дробей с разными знаменателями.

Учащиеся уже знакомы со сравнением дробей с одинаковыми числителями, но разными знаменателями и с одинаковыми знамена­телями, но разными числителями. Однако они еще не умеют сравни­вать дроби с разными числителями и разными знаменателями.

Перед тем как объяснять учащимся смысл нового преобразова­ния, необходимо повторить пройденный материал, выполнив, на­пример, такие задания:

Сравнить дроби 2/5,2/7,2/3 Сказать правило сравнения дробей с

одинаковыми числителями.


Сравнить дроби Сказать правило сравнения дробей

с одинаковыми знаменателями.

Сравнить дроби Эти дроби учащиеся сравнить затрудня-

ются, так как у них разные числители и разные знаменатели. Чтобы сравнить эти дроби, нужно сделать равными числители или знамена­тели этих дробей. Обычно в одинаковых долях выражают знаменате­ли, т. е. приводят дроби к наименьшему общему знаменателю.

Учащихся необходимо познакомить со способом выражения дробей в одинаковых долях.

Сначала рассматриваются дроби с разными знаменателями, но такие, у которых знаменатель одной дроби делится без остатка на знаменатель другой дроби и, следовательно, может являться и знаменателем другой дроби.

Например, у дробей знаменателями являются числа 8 и 2.

Чтобы выразить эти дроби в одинаковых долях, учитель предлага­ет меньший знаменатель умножать последовательно на числа 2, 3, 4 и т. д. и делать это до тех пор, пока не получится результат, равный знаменателю первой дроби. Например, 2 умножим на 2, получим 4. Знаменатели опять у двух дробей разные. Далее 2 умножим на 3, получим 6. Число 6 также не подходит. 2 умножим на 4, получим 8. В этом случае знаменатели стали одинаковыми. Чтобы дробь не изменилась, надо и числитель дроби умно­жить на 4 (на основании основного свойства дроби). Получим дробь Теперь дроби выражены в одинаковых долях. Их

легко и сравнивать, и выполнять с ними действия.

Найти число, на которое нужно умножить меньший знамена­тель одной из дробей, можно делением большего знаменателя на меньший. Например, если 8 разделить на 2, то получим число 4. На это число нужно умножить и знаменатель, и числитель дроби. Значит, чтобы выразить в одинаковых долях несколько дробей, нужно больший знаменатель разделить на меньший, частное умно­жить на знаменатель и числитель дроби с меньшими знаменате­лями. Например, даны дроби Чтобы эти дроби привести

к наименьшему общему знаменателю, нужно 12:6=2, 2x6=12, 306


2x1=2. Дробь примет вид . Затем 12:3=4, 4x3=12, 4x2=8. Дробь примет вид Следовательно, дроби примут соответственно вид т. е. окажутся выражен-

ными в одинаковых долях.

Проводятся упражнения, которые позволяют сформировать умения приведения дробей к общему наименьшему знаменателю.

Например, надо выразить в одинаковых долях дроби

Чтобы учащиеся не забывали то частное, которое получается от деления большего знаменателя на меньший, целесообразно.его

записывать над дробью с меньшим знаменателем. Например, и

Затем рассматриваются такие дроби, у которых больший зна­менатель не делится на меньший и, следовательно, не является

общим для данных дробей. Например, Знаменатель 8 не

делится на 6. В этом случае больший знаменатель 8 будем после­довательно умножать на числа числового ряда, начиная с 2, до тех пор, пока не получим число, которое делится без остатка на оба знаменателя 8 и 6. Чтобы дроби остались равными данным, числители нужно соответственно умножить на те же числа. На-

3 5 пример, чтобы дроби тг и * были выражены в одинаковых долях,

больший знаменатель 8 умножаем на 2(8x2=16). 16 не делится на 6, значит, 8 умножаем на следующее число 3(8x3=24). 24 делится на 6 и на 8, значит, 24 - общий знаменатель для данных дробей. Но чтобы дроби остались равными, числители их надо увеличить во столько же раз, во сколько раз увеличили знамена­тели, 8 увеличили в 3 раза, значит, и числитель этой дроби 3 увеличим в 3 раза.

Дробь примет вид Знаменатель 6 увеличили в 4 раза. Соответственно числитель 5 дроби надо увеличить в 4 раза. Дроби примут соответственно вид


Таким образом, подводим учащихся к общему выводу (правилу) и знакомим их с алгоритмом выражения дробей в одинаковых долях. Например, даны две дроби ¾ и 5/7

1. Находим наименьший общий знаменатель: 7x2=14, 7x3=21,
7x4=28. 28 делится на 4 и на 7. 28 - наименьший общий знаме­
натель для дробей

2. Находим дополнительные множители: 28:4=7,

3. Запишем их над дробями:

4. Числители дробей умножим на дополнительные множители:
3x7=21, 5x4=20.

Получим дроби с одинаковыми знаменателями .Значит,

дроби мы привели к общему наименьшему знаменателю.

Опыт показывает, что ознакомление учащихся с преобразованием дробей целесообразно проводить перед изучением различных ариф­метических действий с дробями. Например, сокращение дробей или замену неправильной дроби целым или смешанным числом целесооб­разно дать перед изучением сложения и вычитания дробей с одина­ковыми знаменателями, так как в полученной сумме или разности

Придется делать либоодно, либо оба преобразования.

Приведение дроби к наименьшему общему знаменателю лучше изучать с учащимися перед темой «Сложение и вычитание дробей с разными знаменателями», а замену смешанного числа неправильной дробью - перед темой «Умножение и деление дро­бей на целое число».

Сложение и вычитание обыкновенных дробей

1. Сложение и вычитание дробей с одинаковыми знаме­нателями.

Исследование, проведенное Алышевой Т.В. 1 , свидетельствует о целесообразности при изучении действий сложения и вычитания обыкновенных дробей с одинаковыми знаменателями использовать аналогию со сложением и вычитанием уже известных учащимся


чисел, полученных в результате измерения величин, и проводить изучение действий дедуктивным методом, т. е. «от общего к част­ному».

Сначала повторяется сложение и вычитание чисел с наимено­ваниями мер стоимости, длины. Например, 8 р. 20 к. ± 4 р. 15 к. При выполнении устного сложения и вычитания нужно склады­вать (вычитать) сначала рубли, а потом копейки.

3 м 45 см ± 2 м 24 см - сначала складываются (вычитаются) метры, а потом сантиметры.

При сложении и вычитании дробей рассматривается общий случай: выполнение этих действий со смешанными дррбями (зна­менатели одинаковые): В этом случае надо: «Сложить (вычесть) целые числа, затем числители, а знаменатель остается тем же». Это общее правило распространяется на все случаи сложения и вычитания дробей. Постепенно вводятся частные слу­чаи: сложение смешанного числа с дробью, потом смешанного числа с целым. После этого рассматри­ваются более трудные случаивычитания: 1) из смешанного числа дроби: 2) из смешанного числа целого:

После усвоения этих достаточно простых случаев вычитания учащиеся знакомятся с более трудными случаями, когда требуется преобразование уменьшаемого: вычитание из одной целой едини­цы или из нескольких единиц, например:

В первом случае единицу нужно представить в виде дроби со знаменателем, равным знаменателю вычитаемого. Во втором слу­чае из целого числа берем единицу и также ее записываем в виде неправильной дроби со знаменателем вычитаемого, получаем в уменьшаемом смешанное число. Вычитание выполняется по обще­му правилу.

Наконец рассматривается наиболее трудный случай вычитания: из смешанного числа, причем числитель дробной части меньше числителя в вычитаемом. В этом случае надо уменьшаемое изменить так, чтобы можно было применить общее правило, т. е. в уменьшаемом занять из целого одну единицу и раздробить


в пятые доли, получим да еще , получится пример

примет такой вид:к его решению уже можно применить

общее правило.

Использование дедуктивного метода обучения сложению и вычи­танию дробей будет способствовать развитию у учащихся умения обобщать, сравнивать, дифференцировать, включать отдельные слу­чаи вычислений в общую систему знаний о действиях с дробями.

Данный обобщенный материал известен из школьного курса математики. Тут рассматриваем дроби общего вида с числами, степенями, корнями, логарифмами, тригонометрическими функция ми или другими объектами. Будут рассмотрены основные преобразования дробей вне зависимости от их вида.

Что такое дробь?

Определение 1

Существует еще несколько определений.

Определение 2

Горизонтальная наклонная черта, которая разделяет A и B , называют чертой дроби или дробной чертой.

Определение 3

Выражение, которое находится над чертой дроби, называют числителем, а под – знаменателем .

От обыкновенных дробей к дробям общего вида

Знакомство с дробью происходит еще в 5 классе, когда проходят обыкновенные дроби. Из определения видно, что числителем и знаменателем являются натуральные числа.

Пример 1

К примеру 1 5 , 2 6 , 12 7 , 3 1 , которые можно записать как 1 / 5 , 2 / 6 , 12 / 7 , 3 / 1 .

После изучения действий с обыкновенными дробями имеем дело с дробями, которые имеют в знаменателе не одно натуральное число, а выражения с натуральными числами.

Пример 2

Например, 1 + 3 5 , 9 - 5 16 , 2 · 7 9 · 12 .

Когда имеем дело с дробями, где есть буквы или буквенные выражения, то записывается таким образом:

a + b c , a - b c , a · c b · d .

Определение 4

Зафиксируем правила сложения, вычитания, умножения обыкновенных дробей a c + b c = a + b c , a c - b c = a - b c , a b · v d = a · c b · d

Для вычисления зачастую необходимо приходить к переводу смешанных чисел в обыкновенные дроби. Когда целую часть обозначим как a , тогда дробная имеет вид b / c , получаем дробь вида a · c + b c , откуда понятно появления таких дробей 2 · 11 + 3 11 , 5 · 2 + 1 2 и так далее.

Черта дроби расценивается как знак деления. Поэтому запись можно преобразовать по-другому:

1: a - (2 · b + 1) = 1 a - 2 · b + 1 , 5 - 1 , 7 · 3: 2 · 3 - 4: 2 = 5 - 1 , 7 · 3 2 · 3 - 4: 2 , где частное 4: 2 можно заменить на дробь, тогда получим выражение вида

5 - 1 , 7 · 3 2 · 3 - 4 2

Вычисления с рациональными дробями занимают особое место в математике, так как в числителе и знаменателе могут быть не просто числовые значения, а многочлены.

Пример 3

Например, 1 x 2 + 1 , x · y - 2 · y 2 0 , 5 - 2 · x + y 3 .

Рациональные выражения рассматриваются как дроби общего вида.

Пример 4

Например, x · x + 1 4 x 2 · x 2 - 1 2 · x 3 + 3 , 1 + x 2 · y · (x - 2) 1 x + 3 · x 1 + 2 - x 4 · x 5 + 6 · x .

Изучение корней, степеней с рациональными показателями, логарифмов, тригонометрических функций говорит о том, что их применение появляется в заданных дробях вида:

Пример 5

a n b n , 2 · x + x 2 3 x 1 3 - 12 · x , 2 x 2 + 3 3 x 2 + 3 , ln (x - 3) ln e 5 , cos 2 α - sin 2 α 1 - 1 cos 2 α .

Дроби могут быть комбинированными, то есть иметь вид x + 1 x 3 log 3 sin 2 x + 3 , lg x + 2 lg x 2 - 2 · x + 1 .

Виды преобразований дробей

Для ряда тождественных преобразований рассматривают несколько видов:

Определение 5

  • преобразование, характерное для работы с числителем и знаменателем;
  • изменение знака перед дробным выражением;
  • приведение к общему знаменателю и сокращение дроби;
  • представление дроби в виде суммы многочленов.

Преобразование выражений в числителе и знаменателе

Определение 6

При тождественно равных выражениях имеем, что полученная дробь является тождественно равной исходной.

Если дана дробь вида A / B , то A и B являются некоторыми выражениями. Тогда при замене получим дробь вида A 1 / B 1 . Необходимо доказать справедливость равенства A / A 1 = B / B 1 при любом значении переменных, удовлетворяющих ОДЗ.

Имеем, что A и A 1 и B и B 1 тождественно равны, тогда их значения тоже равны. Отсюда следует, что при любом их значении A / B и A 1 / B 1 данные дроби будут равны.

Такое преобразование упрощает работу с дробями, если необходимо преобразовывать отдельно числитель и отдельно знаменатель.

Пример 6

Для примера возьмем дробь вида 2 / 18 , которую преобразуем к 2 2 · 3 · 3 . Для этого знаменатель раскладываем на простые множители. Дробь x 2 + x · y x 2 + 2 · x · y + y 2 = x · x + y (x + y) 2 имеет числитель вида x 2 + x · y , означает, что необходимо произвести замену на x · (x + y) , которое будет получено при вынесении за скобки общего множителя x . Знаменатель заданной дроби x 2 + 2 · x · y + y 2 свернуть по формуле сокращенного умножения. Тогда получим, что его тождественно равным выражением является (x + y) 2 .

Пример 7

Если дана дробь вида sin 2 3 · φ - π + cos 2 3 · φ - π φ · φ 5 6 ,тогда для упрощения необходимо числитель заменить 1 по формуле, а знаменатель привести к виду φ 11 12 . Тогда получим, что 1 φ 11 12 равна заданной дроби.

Изменение знака перед дробью, в ее числителе, знаменателе

Преобразования дробей – это также и замена знаков перед дробью. Рассмотрим некоторые правила:

Определение 7

  • при изменении знака числителя получаем дробь, которая равна заданной, причем буквенно это выглядит как _ - A - B = A B , где А и В являются некоторыми выражениями;
  • при изменении знака перед дробью и перед числителем, получаем, что - - A B = A B ;
  • при замене знака перед дробью и его знаменателя, получаем, что - A - B = A B .

Доказательство

Знак минуса в большинстве случаев рассматривается как коэффициент со знаком - 1 , а дробная черта является делением. Отсюда получаем, что - A - B = - 1 · A: - 1 · B . Сгруппировав множители, имеем, что

1 · A: - 1 · B = ((- 1) : (- 1) · A: B = = 1 · A: B = A: B = A B

После доказательства первого утверждения, обосновываем оставшиеся. Получим:

A B = (- 1) · (((- 1) · A) : B) = (- 1 · - 1) · A: B = = 1 · (A: B) = A: B = A B - A - B = (- 1) · (A: - 1 · B) = ((- 1) : (- 1)) · (A: B) = = 1 · (A: B) = A: B = A B

Рассмотрим примеры.

Пример 8

Когда необходимо выполнить преобразование дроби 3 / 7 к виду - 3 - 7 , - - 3 7 , - 3 - 7 , тогда аналогично выполняется с дробью вида - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x .

Преобразования выполняются следующим образом:

1) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - (- 1 + x - x 2) - 2 2 3 - ln x 2 + 3 x + sin 2 x · 3 x = = 1 - x + x 2 - 2 2 3 + ln (x 2 + 3) x - s i n 2 x · 3 x 2) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - (- 1 + x - x 2) 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - 1 - x + x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x 3) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 + ln (x 2 + 3) x - sin 2 x · 3 x

Приведение дроби к новому знаменателю

При изучении обыкновенных дробей, мы коснулись основного свойства дробей, которое позволяет умножать, делить числитель и знаменатель на одно и то же натуральное число. Это видно из равенства a · m b · m = a b и a: m b: m = a b , где a , b , m являются натуральными числами.

Это равенство действительно для любых значений a , b , m и всех a , кроме b ≠ 0 и m ≠ 0 . То есть мы получаем, что если числитель дроби А / В с A и C , которые являются некоторыми выражениями, умножить или разделить на выражение M , не равное 0 , тогда получим дробь, тождественно равную начальной. Получаем, что A · M B · M = A B и A: M B: M = A B .

Отсюда видно, что преобразования основываются на 2 преобразованиях: приведении к общему знаменателю, сокращении.

При приведении к общему знаменателю производится умножение на одно и то же число или выражение числитель и знаменатель. То есть мы переходим к решению тождественной равной преобразованной дроби.

Рассмотрим примеры.

Пример 9

Если взять дробь x + 1 0 , 5 · x 3 и умножить на 2 , тогда получим, что новый знаменатель получится 2 · 0 , 5 · x 3 = x 3 , а выражение примет вид 2 · x + 1 x 3 .

Пример 10

Для приведения дроби 1 - x 2 · x 2 3 · 1 + ln x к другому знаменателю вида 6 · x · 1 + ln x 3 нужно, чтобы числитель и знаменатель быль умножен на 3 · x 1 3 · (1 + ln x) 2 . В итоге получаем дробь 3 · x 1 3 · 1 + ln x 2 · 1 - x 6 · x · (1 + ln x) 3

Такое преобразование как избавление от иррациональности в знаменателе также применимо. Оно избавляет от наличия корня в знаменателе, что упрощает процесс решения.

Сокращение дробей

Основное свойство – это преобразование, то есть ее непосредственное сокращение. При сокращении мы получаем упрощенную дробь. Рассмотрим на примере:

Пример 11

Или дробь вида x 3 · x 3 · x 2 · (2 x 2 + 1 + 3) x 3 · x 3 · 2 x 2 + 1 + 3 · 3 + 1 3 · x , где сокращение производится при помощи x 3 , x 3 , 2 x 2 + 1 + 3 или на выражение вида x 3 · x 3 · 2 x 2 + 1 + 3 . Тогда получим дробь x 2 3 + 1 3 · x

Сокращение дроби является простым, когда общие множители сразу явно видны. Практически это встречается не часто, поэтому предварительно необходимо проводить некоторые преобразования выражений такого вида. Бывают случаи, когда необходимо находить общий множитель.

Если имеется дробь вида x 2 2 3 · (1 - cos 2 x) 2 · sin x 2 · cos x 2 2 · x 1 3 , тогда необходимо применять тригонометрические формулы и свойства степеней для того, чтобы можно было преобразовать дробь к виду x 1 3 · x 2 1 3 · sin 2 x sin 2 x · x 1 3 . Это даст возможность сократить ее на x 1 3 · sin 2 x .

Представление дроби в виде суммы

Когда числитель имеет алгебраическую сумму выражений типа A 1 , A 2 , … , A n , а знаменатель обозначается B , тогда эта дробь может быть представлена как A 1 / B , A 2 / B , … , A n / B .

Определение 8

Для этого зафиксируем это A 1 + A 2 + . . . + A n B = A 1 B + A 2 B + . . . + A n B .

Данное преобразование в корне отличается от сложения дробей с одинаковыми показателями. Рассмотрим пример.

Пример 12

Дана дробь вида sin x - 3 · x + 1 + 1 x 2 , которую мы представим как алгебраическая сумма дробей. Для этого представим как sin x x 2 - 3 · x + 1 x 2 + 1 x 2 или sin x - 3 · x + 1 x 2 + 1 x 2 или sin x x 2 + - 3 · x + 1 + 1 x 2 .

Любая дробь, имеющая вид А / В представляется в виде суммы дробей любым способом. Выражение A в числителе может быть уменьшено или увеличено на любое число или выражение А 0 , которое даст возможность прейти к A + A 0 B - A 0 B .

Разложение дроби на простейшие является частным случаем для преобразования дроби в сумму. Чаще всего его применяют при сложных вычислениях для интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Рассказать друзьям