Реални корени на квадратно уравнение. Решаване на квадратни уравнения, формула за корен, примери

💖 Харесва ли ви?Споделете връзката с приятелите си

Копьевская селска гимназия

10 начина за решаване на квадратни уравнения

Ръководител: Патрикеева Галина Анатолиевна,

учител по математика

с. Копево 2007г

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

1.2 Как Диофант компилира и решава квадратни уравнения

1.3 Квадратни уравнения в Индия

1.4 Квадратни уравнения от ал-Хорезми

1.5 Квадратни уравнения в Европа XIII - XVII век

1.6 За теоремата на Виета

2. Методи за решаване на квадратни уравнения

Заключение

Литература

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

Необходимостта от решаване на уравнения не само от първа, но и от втора степен в древността е била причинена от необходимостта от решаване на проблеми, свързани с намирането на области парцелии със земни работи от военен характер, както и с развитието на самата астрономия и математика. Квадратните уравнения могат да бъдат решени около 2000 г. пр.н.е. д. вавилонци.

Използвайки съвременна алгебрична нотация, можем да кажем, че в техните клинописни текстове има, в допълнение към непълните, такива, например, пълни квадратни уравнения:

X 2 + X = ¾; X 2 - X = 14,5

Правилото за решаване на тези уравнения, изложено във вавилонските текстове, по същество съвпада със съвременното, но не е известно как вавилонците са стигнали до това правило. Почти всички клинописни текстове, открити досега, предоставят само проблеми с решения, изложени под формата на рецепти, без указание как са били намерени.

Въпреки високо ниворазвитието на алгебрата във Вавилон, в клинописните текстове липсва понятието за отрицателно число и общи методи за решаване на квадратни уравнения.

1.2 Как Диофант съставя и решава квадратни уравнения.

Аритметиката на Диофант не съдържа систематично представяне на алгебрата, но съдържа систематична поредица от задачи, придружени от обяснения и решени чрез построяване на уравнения от различни степени.

Когато съставя уравнения, Диофант умело подбира неизвестни, за да опрости решението.

Ето например една от задачите му.

Проблем 11.„Намерете две числа, като знаете, че сборът им е 20, а произведението им е 96“

Диофант разсъждава по следния начин: от условията на задачата следва, че търсените числа не са равни, тъй като ако бяха равни, тогава произведението им не би било равно на 96, а на 100. Така едно от тях ще бъде повече от половината от сумата им, т.е. 10 + х, другото е по-малко, т.е. 10-те. Разликата между тях 2x .

Следователно уравнението:

(10 + x)(10 - x) = 96

100 - х 2 = 96

x 2 - 4 = 0 (1)

Оттук х = 2. Едно от търсените числа е равно на 12 , друго 8 . Решение х = -2за Диофант не съществува, тъй като гръцката математика познава само положителни числа.

Ако решим тази задача, като изберем едно от търсените числа като неизвестно, тогава ще стигнем до решение на уравнението

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Ясно е, че като избира полуразликата на търсените числа като неизвестно, Диофант опростява решението; той успява да сведе проблема до решаване на непълно квадратно уравнение (1).

1.3 Квадратни уравнения в Индия

Задачи за квадратни уравнения се намират още в астрономическия трактат „Aryabhattiam“, съставен през 499 г. от индийския математик и астроном Aryabhatta. Друг индийски учен, Брахмагупта (7 век), очерта общо правилорешения на квадратни уравнения, приведени до една канонична форма:

ах 2 + b x = c, a > 0. (1)

В уравнение (1), коефициентите, с изключение на А, може да бъде и отрицателен. Правилото на Брахмагупта по същество е същото като нашето.

В древна Индия публичните състезания в решаването на трудни проблеми са били обичайни. Една от старите индийски книги казва следното за такива състезания: „Както слънцето засенчва звездите с блясъка си, така учен човекзасенчи славата на друг в популярните събрания, като предлага и решава алгебрични проблеми. Проблемите често се представят в поетична форма.

Това е един от проблемите на известния индийски математик от 12 век. Бхаскари.

Проблем 13.

„Ято бързи маймуни и дванадесет по лозите...

Властите, като ядоха, се забавляваха. Започнаха да скачат, да висят...

Има ги на площада, осма част. Колко маймуни имаше?

Забавлявах се на поляната. Кажи ми, в тази опаковка?

Решението на Бхаскара показва, че той е знаел, че корените на квадратните уравнения са двузначни (фиг. 3).

Уравнението, съответстващо на задача 13 е:

( х /8) 2 + 12 = х

Бхаскара пише под прикритието:

x 2 - 64x = -768

и, за да завършим лявата страна на това уравнение до квадрат, добавя към двете страни 32 2 , след което получаваме:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Квадратни уравнения в ал-Хорезми

В алгебричния трактат на ал-Хорезми е дадена класификация на линейни и квадратни уравнения. Авторът брои 6 вида уравнения, изразявайки ги по следния начин:

1) „Квадратите са равни на корени“, т.е. брадва 2 + c = b X.

2) “Квадратите са равни на числа”, т.е. брадва 2 = c.

3) „Корените са равни на числото“, т.е. ах = s.

4) „Квадратите и числата са равни на корени“, т.е. брадва 2 + c = b X.

5) „Квадратите и корените са равни на числата“, т.е. ах 2 + bx = s.

6) „Корените и числата са равни на квадрати“, т.е. bx + c = брадва 2 .

За ал-Хорезми, който избягва използването на отрицателни числа, членовете на всяко от тези уравнения са събираеми, а не изваждаеми. В този случай уравненията, които нямат положителни решения, очевидно не се вземат предвид. Авторът излага методи за решаване на тези уравнения, използвайки техниките на ал-джабр и ал-мукабала. Неговите решения, разбира се, не съвпадат напълно с нашите. Да не говорим, че е чисто риторично, трябва да се отбележи например, че при решаване на непълно квадратно уравнение от първи тип

ал-Хорезми, както всички математици преди 17-ти век, не взема предвид нулевото решение, вероятно защото в конкретни практически задачи то няма значение. При решаването на пълни квадратни уравнения ал-Хорезми излага правилата за решаването им, като използва конкретни числени примери и след това геометрични доказателства.

Проблем 14.„Квадратът и числото 21 са равни на 10 корена. Намерете корена" (което предполага корена на уравнението x 2 + 21 = 10x).

Решението на автора е нещо подобно: разделете броя на корените наполовина, получавате 5, умножете 5 по себе си, извадете 21 от продукта, това, което остава, е 4. Вземете корен от 4, получавате 2. Извадете 2 от 5 , получавате 3, това ще бъде желаният корен. Или добавете 2 към 5, което дава 7, това също е корен.

Трактатът на ал-Хорезми е първата книга, достигнала до нас, която систематично излага класификацията на квадратните уравнения и дава формули за тяхното решаване.

1.5 Квадратни уравнения в Европа XIII - XVII bb

Формулите за решаване на квадратни уравнения по линията на ал-Хорезми в Европа са изложени за първи път в Книгата на абака, написана през 1202 г. от италианския математик Леонардо Фибоначи. Тази обемна работа, която отразява влиянието на математиката, както в ислямските страни, така и в Древна Гърция, се отличава както с пълнота, така и с яснота на изложението. Авторът самостоятелно разработи някои нови алгебрични примерирешаване на задачи и пръв в Европа въведе отрицателните числа. Книгата му допринася за разпространението на алгебричните знания не само в Италия, но и в Германия, Франция и други европейски страни. Много задачи от Книгата на абака са използвани в почти всички европейски учебници от 16-17 век. и отчасти XVIII.

Общото правило за решаване на квадратни уравнения, намалено до една канонична форма:

х 2 + bx = c,

за всички възможни комбинации от знаци на коефициента b , се формулиран в Европа едва през 1544 г. от M. Stiefel.

Извеждането на формулата за решаване на квадратно уравнение в обща форма е достъпно от Vieth, но Vieth признава само положителни корени. Италианските математици Тарталия, Кардано, Бомбели са сред първите през 16 век. В допълнение към положителните се вземат предвид и отрицателните корени. Едва през 17в. Благодарение на работата на Жирар, Декарт, Нютон и други учени, методът за решаване на квадратни уравнения придобива съвременна форма.

1.6 За теоремата на Виета

Теоремата, изразяваща връзката между коефициентите на квадратно уравнение и неговите корени, наречена на Виета, е формулирана от него за първи път през 1591 г., както следва: „Ако б + г, умножено по А - А 2 , е равно на BD, Това Аравни INи равни г ».

За да разберем Виета, трябва да помним това А, като всяка гласна буква, означаваше неизвестното (нашата X), гласни IN, г- коефициенти за неизвестното. На езика на съвременната алгебра горната формулировка на Виета означава: ако има

(а + b )x - x 2 = аб ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Изразявайки връзката между корените и коефициентите на уравненията с общи формули, написани с помощта на символи, Виете установява еднаквост в методите за решаване на уравнения. Въпреки това, символиката на Виет все още е далеч модерен вид. Той не признаваше отрицателните числа и затова при решаването на уравнения разглеждаше само случаите, когато всички корени бяха положителни.

2. Методи за решаване на квадратни уравнения

Квадратните уравнения са основата, върху която се крепи величествената сграда на алгебрата. Намерени са квадратни уравнения широко приложениепри решаване на тригонометрични, експоненциални, логаритмични, ирационални и трансцендентни уравнения и неравенства. Всички знаем как да решаваме квадратни уравнения от училище (8 клас) до завършването.

Квадратните уравнения се изучават в 8 клас, така че тук няма нищо сложно. Способността да ги решавате е абсолютно необходима.

Квадратно уравнение е уравнение от вида ax 2 + bx + c = 0, където коефициентите a, b и c са произволни числа и a ≠ 0.

Преди да изучавате конкретни методи за решаване, имайте предвид, че всички квадратни уравнения могат да бъдат разделени на три класа:

  1. Нямат корени;
  2. Имате точно един корен;
  3. Те имат два различни корена.

Това е важна разлика между квадратните уравнения и линейните, където коренът винаги съществува и е уникален. Как да определим колко корена има едно уравнение? Има нещо прекрасно за това - дискриминант.

Дискриминант

Нека е дадено квадратното уравнение ax 2 + bx + c = 0. Тогава дискриминантът е просто числото D = b 2 − 4ac.

Трябва да знаете тази формула наизуст. Сега не е важно откъде идва. Друго нещо е важно: по знака на дискриминанта можете да определите колко корена има едно квадратно уравнение. а именно:

  1. Ако Д< 0, корней нет;
  2. Ако D = 0, има точно един корен;
  3. Ако D > 0, ще има два корена.

Моля, обърнете внимание: дискриминантът показва броя на корените, а не изобщо техните знаци, както по някаква причина много хора вярват. Разгледайте примерите и сами ще разберете всичко:

Задача. Колко корена имат квадратните уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Нека напишем коефициентите за първото уравнение и да намерим дискриминанта:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Така че дискриминантът е положителен, така че уравнението има два различни корена. Анализираме второто уравнение по подобен начин:
а = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Дискриминантът е отрицателен, няма корени. Последното останало уравнение е:
а = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Дискриминантът е нула - коренът ще бъде единица.

Моля, имайте предвид, че коефициентите са записани за всяко уравнение. Да, дълго е, да, досадно е, но няма да объркате шансовете и да направите глупави грешки. Изберете сами: скорост или качество.

Между другото, ако разберете, след известно време няма да е необходимо да записвате всички коефициенти. Ще извършвате такива операции в главата си. Повечето хора започват да правят това някъде след 50-70 решени уравнения - общо взето не толкова много.

Корени на квадратно уравнение

Сега да преминем към самото решение. Ако дискриминантът D > 0, корените могат да бъдат намерени по формулите:

Основна формула за корените на квадратно уравнение

Когато D = 0, можете да използвате всяка от тези формули - ще получите същото число, което ще бъде отговорът. И накрая, ако Д< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Първо уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ уравнението има два корена. Нека ги намерим:

Второ уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; с = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнението отново има два корена. Да ги намерим

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \край (подравняване)\]

И накрая, третото уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; с = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ уравнението има един корен. Всяка формула може да се използва. Например първото:

Както можете да видите от примерите, всичко е много просто. Ако знаете формулите и можете да смятате, няма да има проблеми. Най-често възникват грешки при заместване на отрицателни коефициенти във формулата. Тук отново ще ви помогне описаната по-горе техника: погледнете формулата буквално, запишете всяка стъпка - и много скоро ще се отървете от грешките.

Непълни квадратни уравнения

Случва се квадратното уравнение да е малко по-различно от даденото в дефиницията. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Лесно е да се забележи, че в тези уравнения липсва един от членовете. Такива квадратни уравнения са дори по-лесни за решаване от стандартните: те дори не изискват изчисляване на дискриминанта. И така, нека въведем нова концепция:

Уравнението ax 2 + bx + c = 0 се нарича непълно квадратно уравнение, ако b = 0 или c = 0, т.е. коефициентът на променливата x или свободния елемент е равен на нула.

Разбира се, възможен е много труден случай, когато и двата коефициента са равни на нула: b = c = 0. В този случай уравнението приема формата ax 2 = 0. Очевидно е, че такова уравнение има един корен: x = 0.

Нека разгледаме останалите случаи. Нека b = 0, тогава получаваме непълно квадратно уравнение от формата ax 2 + c = 0. Нека го трансформираме малко:

От аритметиката корен квадратенсъществува само от неотрицателно число, последното равенство има смисъл само за (−c /a) ≥ 0. Заключение:

  1. Ако в непълно квадратно уравнение от формата ax 2 + c = 0 неравенството (−c /a) ≥ 0 е изпълнено, ще има два корена. Формулата е дадена по-горе;
  2. Ако (−c /a)< 0, корней нет.

Както можете да видите, дискриминант не е необходим - изобщо няма сложни изчисления в непълните квадратни уравнения. Всъщност дори не е необходимо да помним неравенството (−c /a) ≥ 0. Достатъчно е да изразим стойността x 2 и да видим какво има от другата страна на знака за равенство. Ако има положително число, ще има два корена. Ако е отрицателна, изобщо няма да има корени.

Сега нека разгледаме уравнения от вида ax 2 + bx = 0, в които свободният елемент е равен на нула. Тук всичко е просто: винаги ще има два корена. Достатъчно е да разложим полинома на множители:

Изваждане на общия множител извън скоби

Продуктът е нула, когато поне един от факторите е нула. От тук идват корените. В заключение, нека да разгледаме някои от тези уравнения:

Задача. Решаване на квадратни уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Няма корени, т.к квадрат не може да бъде равен на отрицателно число.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Формули за корените на квадратно уравнение. Разглеждат се случаите на реални, кратни и комплексни корени. Факторизиране на квадратен трином. Геометрична интерпретация. Примери за определяне на корени и факторизиране.

Основни формули

Разгледайте квадратното уравнение:
(1) .
Корени на квадратно уравнение(1) се определят по формулите:
; .
Тези формули могат да се комбинират по следния начин:
.
Когато корените на квадратно уравнение са известни, тогава полином от втора степен може да бъде представен като произведение на фактори (факторизирани):
.

Освен това приемаме, че - реални числа.
Нека помислим дискриминант на квадратно уравнение:
.
Ако дискриминантът е положителен, тогава квадратното уравнение (1) има два различни реални корена:
; .
Тогава факторизацията на квадратния трином има формата:
.
Ако дискриминантът е равен на нула, тогава квадратното уравнение (1) има два кратни (равни) реални корена:
.
Факторизация:
.
Ако дискриминантът е отрицателен, тогава квадратното уравнение (1) има два комплексно спрегнати корена:
;
.
Ето въображаемата единица, ;
и са реалните и въображаемите части на корените:
; .
Тогава

.

Графична интерпретация

Ако изградите графика на функция
,
което е парабола, тогава точките на пресичане на графиката с оста ще бъдат корените на уравнението
.
При , графиката пресича оста x (ос) в две точки.
Когато , графиката докосва оста x в една точка.
Когато , графиката не пресича оста x.

По-долу са дадени примери за такива графики.

Полезни формули, свързани с квадратни уравнения

(f.1) ;
(f.2) ;
(f.3) .

Извеждане на формулата за корените на квадратно уравнение

Извършваме трансформации и прилагаме формули (f.1) и (f.3):




,
Къде
; .

И така, получихме формулата за полином от втора степен във формата:
.
Това показва, че уравнението

извършва при
И .
Това е и са корените на квадратното уравнение
.

Примери за определяне на корените на квадратно уравнение

Пример 1


(1.1) .

Решение


.
Сравнявайки с нашето уравнение (1.1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Тъй като дискриминантът е положителен, уравнението има два реални корена:
;
;
.

От това получаваме факторизацията на квадратния трином:

.

Графика на функцията y = 2 x 2 + 7 x + 3пресича оста x в две точки.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Пресича абсцисната ос (ос) в две точки:
И .
Тези точки са корените на първоначалното уравнение (1.1).

отговор

;
;
.

Пример 2

Намерете корените на квадратно уравнение:
(2.1) .

Решение

Нека напишем квадратното уравнение в общ вид:
.
Сравнявайки с оригиналното уравнение (2.1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Тъй като дискриминантът е нула, уравнението има два кратни (равни) корена:
;
.

Тогава факторизацията на тринома има формата:
.

Графика на функцията y = x 2 - 4 х + 4докосва оста x в една точка.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Той докосва оста x (ос) в една точка:
.
Тази точка е коренът на първоначалното уравнение (2.1). Тъй като този корен се разлага два пъти:
,
тогава такъв корен обикновено се нарича кратно. Тоест, те вярват, че има два равни корена:
.

отговор

;
.

Пример 3

Намерете корените на квадратно уравнение:
(3.1) .

Решение

Нека напишем квадратното уравнение в общ вид:
(1) .
Нека пренапишем оригиналното уравнение (3.1):
.
Сравнявайки с (1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Дискриминантът е отрицателен, .

Следователно няма истински корени.
;
;
.

Можете да намерите сложни корени:


.

Тогава

Нека начертаем функцията
.
Графиката на функцията не пресича оста x. Няма истински корени.

отговор

Графиката на тази функция е парабола. Тя не пресича оста x (ос). Следователно няма истински корени.
;
;
.

Няма истински корени. Сложни корени: Някои задачи по математика изискват способността да се изчислява стойността на корен квадратен. Такива проблеми включват решаване на уравнения от втори ред. В тази статия ще представимефективен метод изчисленияквадратни корени

и го използвайте, когато работите с формули за корените на квадратно уравнение.

Какво е квадратен корен? В математиката това понятие съответства на символа √. Исторически данни сочат, че е използван за първи път около първата половина на 16 век в Германия (първият немски труд по алгебра от Кристоф Рудолф). Учените смятат, че посоченият символ е трансформиранлатиница

r (radix означава "корен" на латински).

Коренът на положително число (x > 0) също е положително число (y > 0), но ако вземете корена на отрицателно число (x< 0), то его результатом уже будет комплексное число, включающее мнимую единицу i.

Ето два прости примера:

√9 = 3, тъй като 3 2 = 9; √(-9) = 3i, тъй като i 2 = -1.

Итеративна формула на Heron за намиране на стойностите на квадратни корени

Горните примери са много прости и изчисляването на корените в тях не е трудно. Трудности започват да се появяват при намиране на коренни стойности за всяка стойност, която не може да бъде представена като квадрат естествено число, например √10, √11, √12, √13, да не говорим за факта, че на практика е необходимо да се намерят корени за нецели числа: например √(12,15), √(8,5) и така нататък.

Във всички горепосочени случаи трябва да се използва специален метод за изчисляване на квадратния корен. Понастоящем са известни няколко такива метода: например разширение на серия Тейлър, разделяне на колони и някои други. От всички известни методи, може би най-простият и най-ефективен е използването на итеративната формула на Херон, която е известна още като вавилонския метод за определяне на квадратни корени (има доказателства, че древните вавилонци са го използвали в своите практически изчисления).

Нека е необходимо да се определи стойността на √x. Формулата за намиране на квадратния корен е следната:

a n+1 = 1/2(a n +x/a n), където lim n->∞ (a n) => x.

Нека дешифрираме тази математическа нотация. За да изчислите √x, трябва да вземете определено число a 0 (може да е произволно, но за да получите бързо резултата, трябва да го изберете така, че (a 0) 2 да е възможно най-близо до x. След това го заменете в посочената формула за изчисляване на квадратния корен и получаване на ново число a 1, което вече ще бъде по-близо до желаната стойност. След това е необходимо да замените 1 в израза и да получите 2. Тази процедура трябва да се повтори, докато. се получава необходимата точност.

Пример за използване на итеративната формула на Heron

Описаният по-горе алгоритъм за получаване на квадратен корен от дадено число може да звучи доста сложен и объркващ за мнозина, но в действителност всичко се оказва много по-просто, тъй като тази формула се сближава много бързо (особено ако е избрано успешно число 0) .

Нека дадем прост пример: трябва да изчислите √11. Нека изберем 0 = 3, тъй като 3 2 = 9, което е по-близо до 11 отколкото 4 2 = 16. Като заместим във формулата, получаваме:

a 1 = 1/2(3 + 11/3) = 3,333333;

a 2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a 3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Няма смисъл да продължаваме изчисленията, тъй като установихме, че 2 и 3 започват да се различават едва от 5-ия знак след десетичната запетая. По този начин беше достатъчно да се приложи формулата само 2 пъти, за да се изчисли √11 с точност до 0,0001.

В днешно време калкулаторите и компютрите се използват широко за изчисляване на корени, но е полезно да запомните маркираната формула, за да можете ръчно да изчислите точната им стойност.

Уравнения от втори ред

Разбирането какво е квадратен корен и способността да се изчислява се използва при решаването на квадратни уравнения. Тези уравнения се наричат ​​равенства с едно неизвестно, общ изгледкоето е показано на фигурата по-долу.

Тук c, b и a представляват някои числа и a не трябва да е равно на нула, а стойностите на c и b могат да бъдат напълно произволни, включително равни на нула.

Всички стойности на x, които отговарят на равенството, посочено на фигурата, се наричат ​​неговите корени (това понятие не трябва да се бърка с квадратния корен √). Тъй като разглежданото уравнение е от 2-ри ред (x 2), тогава не може да има повече от два корена за него. Нека разгледаме по-нататък в статията как да намерим тези корени.

Намиране на корените на квадратно уравнение (формула)

Този метод за решаване на разглеждания тип равенства се нарича още универсален метод или дискриминантен метод. Може да се използва за всякакви квадратни уравнения. Формулата за дискриминанта и корените на квадратното уравнение е следната:

То показва, че корените зависят от стойността на всеки от трите коефициента на уравнението. Освен това изчислението на x 1 се различава от изчислението на x 2 само по знака пред квадратния корен. Радикалният израз, който е равен на b 2 - 4ac, не е нищо повече от дискриминанта на въпросното равенство. Дискриминантът във формулата за корените на квадратно уравнение играе важна роля, тъй като определя броя и вида на решенията. Така че, ако е равно на нула, тогава ще има само едно решение, ако е положително, тогава уравнението има два реални корена и накрая, отрицателен дискриминантводи до два комплексни корена x 1 и x 2 .

Теорема на Виета или някои свойства на корените на уравнения от втори ред

IN края на XVIвек, един от основателите на съвременната алгебра, французин, изучавайки уравнения от втори ред, успя да получи свойствата на неговите корени. Математически те могат да бъдат записани така:

x 1 + x 2 = -b / a и x 1 * x 2 = c / a.

И двете равенства могат лесно да бъдат получени от всеки, просто трябва да изпълните съответните математически операциис корени, получени чрез формула с дискриминант.

Комбинацията от тези два израза може с право да се нарече втората формула за корените на квадратно уравнение, което позволява да се познаят неговите решения без използване на дискриминант. Тук трябва да се отбележи, че въпреки че и двата израза са винаги валидни, е удобно да се използват за решаване на уравнение само ако то може да бъде факторизирано.

Задачата за консолидиране на придобитите знания

Нека да решим математическа задача, в която ще демонстрираме всички техники, разгледани в статията. Условията на задачата са следните: трябва да намерите две числа, за които произведението е -13, а сборът е 4.

Това условие веднага ни напомня за теоремата на Виета, използвайки формулите за сумата от квадратни корени и техния продукт, записваме:

x 1 + x 2 = -b / a = 4;

x 1 * x 2 = c / a = -13.

Ако приемем, че a = 1, тогава b = -4 и c = -13. Тези коефициенти ни позволяват да създадем уравнение от втори ред:

x 2 - 4x - 13 = 0.

Нека използваме формулата с дискриминанта и да получим следните корени:

x 1,2 = (4 ± √D)/2, D = 16 - 4 * 1 * (-13) = 68.

Тоест проблемът беше сведен до намирането на числото √68. Обърнете внимание, че 68 = 4 * 17, тогава, използвайки свойството квадратен корен, получаваме: √68 = 2√17.

Сега нека използваме разглежданата формула за квадратен корен: a 0 = 4, тогава:

a 1 = 1/2(4 + 17/4) = 4,125;

a 2 = 1/2(4,125 + 17/4,125) = 4,1231.

Няма нужда да изчислявате 3, тъй като намерените стойности се различават само с 0,02. Така √68 = 8,246. Замествайки го във формулата за x 1,2, получаваме:

x 1 = (4 + 8,246)/2 = 6,123 и x 2 = (4 - 8,246)/2 = -2,123.

Както виждаме, сумата от намерените числа наистина е равна на 4, но ако намерим произведението им, то ще бъде равно на -12,999, което удовлетворява условията на задачата с точност до 0,001.

Квадратни уравнения. Дискриминант. Решение, примери.

внимание!
Има допълнителни
материали в специален раздел 555.
За тези, които са много "не много..."
И за тези, които „много...“)

Видове квадратни уравнения

Какво е квадратно уравнение? Как изглежда? В срок квадратно уравнениеключовата дума е "квадрат".Това означава, че в уравнението Задължителнотрябва да има x на квадрат. В допълнение към него уравнението може (или не!) да съдържа само X (на първа степен) и само число (безплатен член).И не трябва да има X на степен по-голяма от две.

От математически термини квадратното уравнение е уравнение от формата:

тук a, b и c- някои числа. b и c- абсолютно всякакви, но А– нещо различно от нула. Например:

тук А =1; b = 3; c = -4

тук А =2; b = -0,5; c = 2,2

тук А =-3; b = 6; c = -18

Е, разбирате...

В тези квадратни уравнения отляво има пълен комплектчленове. Х на квадрат с коефициент а, x на първа степен с коефициент bИ безплатен член s.

Такива квадратни уравнения се наричат пълен.

Ами ако b= 0, какво получаваме? Имаме X ще изчезне на първа степен.Това се случва, когато се умножи по нула.) Оказва се, например:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

и т.н. И ако и двата коефициента bИ cса равни на нула, тогава е още по-просто:

2x 2 =0,

-0,3x 2 =0

Такива уравнения, при които нещо липсва, се наричат непълни квадратни уравнения.Което е съвсем логично.) Моля, обърнете внимание, че x на квадрат присъства във всички уравнения.

Между другото защо Ане може да е равно на нула? И вие замествате вместо това Анула.) Нашият X на квадрат ще изчезне! Уравнението ще стане линейно. И решението е съвсем друго...

Това са всички основни типове квадратни уравнения. Пълна и непълна.

Решаване на квадратни уравнения.

Решаване на пълни квадратни уравнения.

Квадратните уравнения са лесни за решаване. По формули и ясни, прости правила. На първия етап е необходимо даденото уравнение да се намали до стандартен изглед, т.е. към формата:

Ако уравнението вече ви е дадено в тази форма, не е необходимо да правите първия етап.) Основното е да определите правилно всички коефициенти, А, bИ c.

Формулата за намиране на корените на квадратно уравнение изглежда така:

Изразът под знака за корен се нарича дискриминант. Но повече за него по-долу. Както можете да видите, за да намерим X, използваме само a, b и c. Тези. коефициенти от квадратно уравнение. Просто внимателно заменете стойностите a, b и cИзчисляваме по тази формула. Да заместим със собствените си знаци! Например в уравнението:

А =1; b = 3; c= -4. Тук го записваме:

Примерът е почти решен:

Това е отговорът.

Много е просто. И какво, мислите, че е невъзможно да направите грешка? Ами да, как...

Най-честите грешки са объркване със стойностите на знаците a, b и c. Или по-скоро не с техните знаци (къде да се объркате?), А със заместване отрицателни стойностивъв формулата за изчисляване на корените. Това, което помага тук, е подробен запис на формулата с конкретни числа. Ако има проблеми с изчисленията, направи това!

Да предположим, че трябва да решим следния пример:

тук а = -6; b = -5; c = -1

Да приемем, че знаете, че рядко получавате отговори от първия път.

Е, не бъдете мързеливи. Ще отнеме около 30 секунди, за да напишете допълнителен ред и броя на грешките рязко ще намалее. Така че ние пишем подробно, с всички скоби и знаци:

Изглежда невероятно трудно да се пише толкова внимателно. Но само изглежда така. Опитайте го. Е, или изберете. Кое е по-добро, бързо или правилно?

Освен това ще те направя щастлив. След известно време няма да има нужда да записвате всичко толкова внимателно. Ще се оправи от само себе си. Особено ако използвате практически техники, които са описани по-долу. Този зъл пример с куп минуси се решава лесно и без грешки!

Но често квадратните уравнения изглеждат малко по-различно. Например така: Разпознахте ли го?) Да! това.

непълни квадратни уравнения

Решаване на непълни квадратни уравнения. a, b и c.

Те могат да бъдат решени и с обща формула. Просто трябва да разберете правилно на какво са равни тук. Разбрахте ли го? В първия примера = 1; b = -4; cА ? Изобщо го няма! Ами да, точно така. В математиката това означава, че c = 0 ! Това е. Вместо това заменете нула във формулатав, си ще успеем. Същото и с втория пример. Само ние нямаме нула тук b !

, А

Но непълните квадратни уравнения могат да бъдат решени много по-лесно. Без никакви формули. Нека разгледаме първото непълно уравнение. Какво можете да направите от лявата страна? Можете да извадите X от скоби! Да го извадим.
И какво от това? И фактът, че продуктът е равен на нула тогава и само ако някой от факторите е равен на нула! не ми вярваш Добре, тогава измислете две ненулеви числа, които, когато се умножат, ще дадат нула!
Не работи? това е... Следователно можем уверено да напишем:, x 1 = 0.

х 2 = 4 Всички. Това ще бъдат корените на нашето уравнение. И двете са подходящи. Когато заместваме някое от тях в оригиналното уравнение, получаваме правилната идентичност 0 = 0. Както можете да видите, решението е много по-просто от използването на общата формула. Между другото да отбележа кое X ще е първото и кое второто - абсолютно безразлично. Удобно е да пишете в ред,х 1 - какво е по-малък их 2

- това, което е по-голямо.

Второто уравнение също може да бъде решено просто. Преместете 9 надясно. Получаваме:

Всичко, което остава, е да извлечем корена от 9 и това е. Ще се окаже: . Също така два корена, х 1 = -3.

х 2 = 3 Ето как се решават всички непълни квадратни уравнения. Или като поставите X извън скоби, илипросто прехвърляне
числа вдясно и след това извличане на корена.

Изключително трудно е да се объркат тези техники. Просто защото в първия случай ще трябва да извлечете корена на X, което е някак неразбираемо, а във втория случай няма какво да извадите от скоби...

Дискриминант. Дискриминантна формула. дискриминант ! Рядко гимназист не е чувал тази дума! Фразата „ние решаваме чрез дискриминант“ вдъхва увереност и увереност. Защото няма нужда да очаквате трикове от дискриминанта! Използва се лесно и безпроблемно.) Напомням ви най-общата формула за решаване всякаквиквадратни уравнения:

Изразът под знака за корен се нарича дискриминант. Обикновено дискриминантът се обозначава с буквата г. Дискриминантна формула:

D = b 2 - 4ac

И какво е толкова забележително в този израз? Защо заслужаваше специално име? Какво значението на дискриминанта?Все пак -б,или в тази формула те не го наричат ​​конкретно... Букви и букви.

Ето това е нещото. При решаване на квадратно уравнение с помощта на тази формула е възможно само три случая.

1. Дискриминантът е положителен.Това означава, че коренът може да бъде извлечен от него. Дали коренът се извлича добре или зле е друг въпрос. Важно е какво се извлича по принцип. Тогава вашето квадратно уравнение има два корена. Две различни решения.

2. Дискриминантът е нула.Тогава ще имате едно решение. Тъй като добавянето или изваждането на нула в числителя не променя нищо. Строго погледнато, това не е един корен, а две еднакви. Но в опростена версия е обичайно да се говори за едно решение.

3. Дискриминантът е отрицателен.Не може да се извади корен квадратен от отрицателно число. О, добре. Това означава, че няма решения.

Честно казано, кога просто решениеквадратни уравнения, концепцията за дискриминант не е особено необходима. Заместваме стойностите на коефициентите във формулата и броим. Там всичко става от само себе си, два корена, един и нито един. При решаване на по-сложни задачи обаче, без знания значение и формула на дискриминантане мога да мина. Особено в уравненията с параметри. Такива уравнения са висш пилотаж за държавния изпит и единния държавен изпит!)

така че как се решават квадратни уравнениячрез дискриминанта, който запомнихте. Или сте научили, което също не е лошо.) Знаете как да определите правилно a, b и c. знаеш ли как внимателнозаменете ги в коренната формула и внимателнопребройте резултата. Разбрахте ли това ключова думатук - внимателно?

Сега вземете под внимание практическите техники, които значително намаляват броя на грешките. Същите, които са от невнимание... За които после става болезнено и обидно...

Първа среща . Не бъдете мързеливи, преди да решите квадратно уравнение и да го приведете в стандартна форма. какво значи това
Да кажем, че след всички трансформации получавате следното уравнение:

Не бързайте да пишете коренната формула! Почти сигурно ще объркате шансовете a, b и c.Конструирайте примера правилно. Първо X на квадрат, след това без квадрат, след това свободният член. като това:

И отново, не бързайте! Минус пред Х на квадрат може наистина да ви разстрои. Лесно се забравя... Махни минуса. как? Да, както беше казано в предишната тема! Трябва да умножим цялото уравнение по -1. Получаваме:

Но сега можете спокойно да запишете формулата за корените, да изчислите дискриминанта и да завършите решаването на примера. Решете сами.

Сега трябва да имате корени 2 и -1. Рецепция втори. Проверете корените! Според теоремата на Виета. Не се страхувайте, ще ви обясня всичко! Проверкапоследно уравнение. Тези. тази, която използвахме, за да запишем формулата на корена. Ако (както в този пример) коефа = 1 , проверката на корените е лесна. Достатъчно е да ги умножите. Резултатът трябва да е безплатен член, т.е. в нашия случай -2. Моля, обърнете внимание, не 2, а -2! Безплатен член с твоя знак

. Ако не се получи, значи вече са се прецакали някъде. Потърсете грешката. bАко работи, трябва да добавите корените. Последна и последна проверка. Коефициентът трябва да бъде с противоположност bпознат. В нашия случай -1+2 = +1. Коефициент
, което е преди X, е равно на -1. Значи всичко е точно! Жалко е, че това е толкова просто само за примери, където x на квадрат е чисто, с коефициента = 1. Но поне проверете такива уравнения! Всичкипо-малко грешки

ще. Прием трети

. Ако вашето уравнение има дробни коефициенти, отървете се от дробите! Умножете уравнението по общ знаменател, както е описано в урока "Как се решават уравнения? Трансформации на идентичност." Когато работите с дроби, грешките продължават да се прокрадват по някаква причина...

Между другото, обещах да опростя злия пример с куп минуси. Моля те! Ето го.

За да не се объркаме от минусите, умножаваме уравнението по -1. Получаваме:

това е! Решаването е удоволствие!

И така, нека обобщим темата.:

Практически съвети 1. Преди да решим, привеждаме квадратното уравнение в стандартна форма и го изграждаме.

вярно

2. Ако има отрицателен коефициент пред X на квадрат, ние го елиминираме, като умножим цялото уравнение по -1.

3. Ако коефициентите са дробни, елиминираме дробите, като умножим цялото уравнение по съответния фактор. 4. Ако х на квадрат е чисто, неговият коефициент е равен на едно, решението може лесно да се провери с помощта на теоремата на Виета.

направи го!

Сега можем да решим.)

Решете уравнения:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Следователно можем уверено да напишем:
Отговори (в безпорядък):

х 2 = 52

х 1,2 =
х 1 = 2

х 2 = -0,5

Също така два корена
х 1 = -3

x - произволно число

няма решения
х 1 = 0,25

Всичко ли пасва? Страхотно! Квадратните уравнения не са вашето главоболие. Първите три се получиха, но останалите не? Тогава проблемът не е в квадратните уравнения. Проблемът е в тъждествените трансформации на уравнения. Разгледайте линка, полезен е.

Не се получава съвсем? Или изобщо не се получава? Тогава раздел 555 ще ви помогне. Всички тези примери са разбити там. Показано основенгрешки в решението. Разбира се, говорим и за използването на идентични трансформации при решаване на различни уравнения. Помага много!

Ако харесвате този сайт...

Между другото, имам още няколко интересни сайта за вас.)

Можете да практикувате решаване на примери и да разберете вашето ниво. Тестване с незабавна проверка. Да учим - с интерес!)

Можете да се запознаете с функции и производни.



Кажете на приятели