Индукционный нагрев, основные принципы и технологии. Простой индукционный нагреватель Индукционный нагреватель 1000w

💖 Нравится? Поделись с друзьями ссылкой

Привет всем. Сегодня рассмотрим популярную штуку - индукционный нагреватель прямиком с Китая, точнее с магазина бенггуд.

Такие платы китайцы выпускают с разными модификациями, на любой вкус.


Мой образец не из самых бюджетных бюджетных, в комплекте есть индуктор, нынче достать медную трубу нужного диаметра довольно трудно, поэтому если брать такую плату, то лучше сразу с индуктором.



Итак, это популярная схема ZVS драйвера, на базе которого можно построить все, что угодно, от простых преобразователей до индукционных нагревателей, я намерен детально протестировать этот образец, раскрыть потенциал, и сделать все возможные замеры, поэтому одной статьей не ограничимся.

В комплекте плата и сам индуктор, схема нагревателя сейчас перед вами.


Заявленная мощность 1киловатт, входное напряжение от 12 до 36 Вольт при максимальном токе в 20 Ампер, тут китайцы опровергают самих себя, ведь даже при максимальном напряжении и токе потребляемая мощность будет не более 720 ватт, но зная эту схему, скажу, что она может питаться и от большего напряжения, вплоть до 60 вольт и потреблять токи более 20 Ампер, так, что если речь идет о потребляемой мощности, то она может перевалить за 1000 ватт, но вот на счет полезной мощности с учетом КПД схемы, китайцы молчат. В реальности полезная мощность около 200-250 ватт при питании от источника в 36В.


Печатная плата двухсторонняя, сделана отлично, но китайцы слегка поленились почистить остатки флюса, силовые дорожки производитель дополнительно залудил, в общем, нареканий нет, размеры платы вы сейчас видите на своих экранах. (Позже, при подаче 36 Вольт спустя некоторое время одна из силовых дорожек попросту сгорела, пришлось усилить многожильным медным проводом и все дополнительно залудить)



Схема имеет принудительное охлаждение в виде кулера, расположен он непосредственно над транзисторами и питается от отдельного понижающего стабилизатора на базе микросхемы XL2596. Плата стабилизатора приклеена к кулеру соплями (горячими).



Силовых транзисторов 2, это мощные полевики IRFP260 (200В 50А), а схема из себя представляет двухтактный автогенератор.



Для ограничения тока затворов ключей использованы мощные резисторы на 470 Ом, на вид они двухваттные, но размеры чуть больше стандартных двухваттных резисторов, так, что возможно резисторы на 3 или 4 ватта.


Резисторы одновременно являются ограничителями для стабилитронов, которые не допускают на затворе ключей образования повышенного напряжения, стабилизируя на уровне 12 Вольт, видно посадочное место для линейного стабилизатора на 12 или 15 вольт, поскольку стабилитроны в некоторых версиях заменены на линейный стабилизатор.


Индуктор с батареей конденсаторов образуют параллельный колебательный контур, параметры этих составляющих задают рабочую частоту схемы в целом, поскольку это резонансный преобразователь.


Батарея состоит из 6 и специализированных конденсаторов, емкость каждого 0,33 мкФ, общая емкость около 2-х мкФ.



Такие конденсаторы предназначены для работы в высокочастотных схемах и применяются в частности в индукционных нагревателях, так, что это идеальный вариант для подобной схемы.

На плате имеются латунные стойки для крепления кулера и индуктора, довольно удобное решение.



Дросселей два, по ним поступает силовое питание, оба дросселя идентичны, намотаны на кольцах из порошкового железа. Количество витков 30, диаметр провода 1 мм, индуктивность 74мкГн.



Индуктор или контур, из себя представляет медную трубу с диаметром 5мм, внутренний диаметр индуктора 42-мм, количество витков почти 8, витки можно растянуть или сжать, главное не замкнуть.



Питание подается на клеммник, который расположен в укромном местечке под кулером.

Такой же клеммник имеется и спереди, к нему можно подключать контур. Удобен такой клеммник в случае использование контуров из медного провода.


На клеммах питания полярность подписана, проблем с подключением не возникнет.


Я думаю с платой все понятно, переходим к тестам. Хочу сразу сказать, полностью нагружу индуктор в одном из следующих статьей, поскольку для максимального разгона нужно водяное охлаждение, а у меня, к сожалению, нет соответствующего водяного насоса.

Итак, первым делом давайте проверим ток холостого хода от источника в 12 Вольт.


Как видим, схема потребляет около 2-х Ампер, скажу, что для именно этой схемы - такое потребление является нормой.

От источника в 24 Вольт потребление выросло до 4 А, что и стоило ожидать.


И наконец, от источника в 36 Вольт схема потребляет почти 5.5А в холостую.


Рабочая частота составляет около 90 кГц,


Это форма импульсов на затворе одного из ключей.


На индукторе наблюдаем чистую синусоиду, обратите внимание на размах амплитуды, многократно превышает напряжение питания.

Для тестов были куплены 3 полностью новых аккумулятора на 12 Вольт от бесперебойника, подключил последовательно для получения 36 Вольт.
За пару секунд можно нагреть тонкую жесть на подобии лезвий от канцелярских ножиков и т.п.



Сейчас вы видите потребление схемы в случае нагрева жестяной гильзы от аккумулятора 18650, напряжение аккумуляторов просело до 26 Вольт.


Без вентилятора нагревается все - ключи, дросселя, конденсаторы и затворные резисторы, контур нагревается особо критично даже без нагрузки, поэтому он в виде трубы и если собираетесь использовать нагреватель для каких-то целей обязательно впустите водяное охлаждение, иначе контур раскалиться буквально до красна. Также очень рекомендую усилить силовые шины на плате, китайцы их залудили, но греются ужасно.

У читателей может возникнуть вполне нормальный вопрос - будет ли такой индукционник нагревать иные металлы помимо железа, скажу, что греет, но так слабо, что почти незаметно. Пробовал алюминий, латунь, медь, олово, нагрев еле чувствуется, но не смотря на это таким индуктором расплавить некоторые металлы получится, если тигель установить в железную трубу, а лучше трубу в тигель, железо нагреется и тепло передастся металлу, который подлежит плавлению.

В любом случае нужно помнить, что схема любительская и для серьезных целей не годиться из-за отсутствия схемы ШИМ управления, контроля тока, температуры, защит и прочих узлов которые содержат в дорогие, профессиональные нагреватели, но профессиональны модели могут стоить в несколько сотен тысяч рублей, а наша платка стоит всего каких-то 36 вечнозеленых долларов.



В случае эксплуатации советую поставить предохранитель по питанию Ампер на 40, чтобы не спалить ключи в случае чего, а это легко сделать, если случайно замкнуть витки контура при больших питающих напряжениях, либо перепутать полярность питания.
На сегодня все, подписывайтесь на нашу группу, чтобы не пропускать обновления.

Товар можно купить

Видео-обзор

Когда перед человеком встает необходимость нагреть металлический объект, ему на ум обязательно приходит огонь. Огонь – старомодный, неэффективный и медленный способ нагреть металл. Он тратит львиную долю энергии на тепло, и от огня всегда идет дым. Как было бы здорово, если бы всех этих проблем можно было избежать.

Сегодня я покажу вам как собрать индукционный нагреватель своими руками с ZVS-драйвером. Это приспособление нагревает большинство металлов с помощью ZVS-драйвера и силы электромагнетизма. Такой нагреватель высокоэффективен, не производит дыма, а нагрев таких небольших металлических изделий, как, допустим, скрепка — вопрос нескольких секунд. Видео демонстрирует нагреватель в действии, но инструкция там представлена другая.

Шаг 1: Принцип работы



Многие из вас сейчас задаются вопросом – что такое этот ZVS-драйвер? Это высокоэффективный трансформатор, способный создавать мощное электромагнитное поле, нагревающее металл, основа нашего нагревателя.

Чтобы стало понятно, как работает наш прибор, я расскажу о ключевых моментах. Первый важный момент — источник питания 24 В. Напряжение должно быть 24В при максимальной силе тока 10А. У меня будут два свинцово-кислотных аккумулятора, соединенных последовательно. Они запитывают плату ZVS-драйвера. Трансформатор дает установившийся ток на спираль, внутрь которой помещается объект, который надо нагреть. Постоянное изменение направления тока создает переменное магнитное поле. Оно создает внутри металла вихревые токи, преимущественно высокой частоты. Из-за этих токов и низкого сопротивления металла выделяется тепло. Согласно закону Ома, сила тока, трансформируемая в тепло, в цепи с активным сопротивлением, будет P=I^2*R.

Очень важен металл, из которого состоит объект, который вы хотите нагреть. У сплавов на основе железа более высокая магнитная проницаемость, они могут использовать больше энергии магнитного поля. Из-за этого они быстрее нагреваются. Алюминий имеет низкую магнитную проницаемость и нагревается, соответственно, дольше. А предметы с высоким сопротивлением и низкой магнитной проницаемостью, например, палец, вообще не нагреются. Сопротивление материала очень важно. Чем выше сопротивление, тем слабее ток пройдет по материалу, и тем, соответственно, меньше выделится тепла. Чем ниже сопротивление, тем сильнее будет ток, и согласно закону Ома, меньше потеря напряжения. Это немного сложно, но из-за связи между сопротивлением и выдачей мощности, максимальная выдача мощности достигается, когда сопротивление равно 0.

Трансформатор ZVS самая сложная часть прибора, я объясню, как он работает. Когда ток включен, он идет через два индукционных дросселя к обоим концам спирали. Дроссели нужны, чтобы убедиться, что устройство не выдаст слишком сильный ток. Далее ток идет через 2 резистора 470 Ом на затворы МДП-транзисторов.

Из-за того, что идеальных компонентов не существует, один транзистор будет включаться раньше, чем другой. Когда это происходит, он принимает на себя весь входящий ток со второго транзистора. Он также будет коротить второй на землю. Из-за этого не только ток потечет через катушку в землю, но и через быстрый диод будет разряжаться затвор второго транзистора, тем самым блокируя его. Из-за того, что параллельно катушке подключен конденсатор, создается колебательный контур. Из-за возникшего резонанса, ток поменяет свое направление, напряжение упадет до 0В. В этот момент затвор первого транзистора разряжается через диод на затвор второго транзистора, блокируя его. Этот цикл повторяется тысячи раз за секунду.

Резистор 10К призван уменьшить избыточный заряд затвора транзистора, действуя как конденсатор, а зенеровский диод должен сохранять напряжение на затворах транзисторов 12В или ниже, чтобы они не взорвались. Этот трансформатор высокочастотный преобразователь напряжения позволяет нагреваться металлическим объектам.
Пришло время собрать нагреватель.

Шаг 2: Материалы


Для сборки нагревателя материалов нужно немного, и большую их часть, к счастью, можно найти бесплатно. Если вы видели где-то валяющуюся просто так электронно-лучевую трубку, сходите и заберите ее. В ней есть большая часть нужных для нагревателя деталей. Если вы хотите более качественных деталей, купите их в магазине электрозапчастей.

Вам понадобятся:

Шаг 3: Инструменты

Для этого проекта вам понадобятся:

Шаг 4: Охлаждение полевых транзисторов

В этом приборе транзисторы выключаются при напряжении 0 В, и нагреваются не очень сильно. Но если вы хотите, чтобы нагреватель работал дольше одной минуты, вам нужно отводить тепло от транзисторов. Я сделал обоим транзисторам один общий поглотитель тепла. Убедитесь, что металлические затворы не касаются поглотителя, иначе МДП-транзисторы закоротит и они взорвутся. Я использовал компьютерный теплоотвод, и на нем уже была полоса силиконового герметика. Чтобы проверить изоляцию, коснитесь мультиметром средней ножки каждого МДП-транзистора (затвора), если мультиметр запищал, то транзисторы не изолированы.

Шаг 5: Конденсаторная батарея

Конденсаторы очень сильно нагреваются из-за тока, постоянно проходящего через них. Нашему нагревателю нужна емкость конденсатора 0,47 мкФ. Поэтому нам нужно объединить все конденсаторы в блок, таким образом, мы получим требуемую емкость, а площадь рассеивания тепла увеличится. Номинальное напряжение конденсаторов должно быть выше 400 В, чтобы учесть пики индуктивного напряжения в резонансном контуре. Я сделал два кольца из медной проволоки, к которым припаял 10 конденсаторов 0,047 мкФ параллельно друг другу. Таким образом, я получил конденсаторную батарею совокупной емкостью 0,47 мкФ с отличным воздушным охлаждением. Я установлю ее параллельно рабочей спирали.

Шаг 6: Рабочая спираль



Это та часть прибора, в которой создается магнитное поле. Спираль сделана из медной проволоки – очень важно, чтобы была использована именно медь. Сначала я использовал для нагревания стальную спираль, и прибор работал не очень хорошо. Без рабочей нагрузки он потреблял 14 А! Для сравнения, после замены спирали на медную, прибор стал потреблять только 3 А. Я думаю, что в стальной спирали возникали вихревые токи из-за содержания железа, и она тоже подвергалась индукционному нагреву. Не уверен, что причина именно в этом, но это объяснение кажется мне наиболее логичным.

Для спирали возьмите медную проволоку большого сечения и сделайте 9 витков на отрезке ПВХ-трубы.

Шаг 7: Сборка цепи





Я сделал очень много проб и совершил много ошибок, пока правильно собрал цепь. Больше всего трудностей было с источником питания и со спиралью. Я взял 55А 12В импульсный блок питания. Я думаю, этот блок питания дал слишком высокий начальный ток на ZVS-драйвер, из-за чего взорвались МДП-транзисторы. Возможно, это исправили бы дополнительные индукторы, но я решил просто заменить блок питания на свинцово-кислотные аккумуляторы.
Потом я мучился с катушкой. Как я уже говорил, стальная катушка не подходила. Из-за высокого потребления тока стальной спиралью взорвались еще несколько транзисторов. В общей сложности у меня взорвались 6 транзисторов. Что ж, на ошибках учатся.

Я переделывал нагреватель множество раз, но здесь я расскажу, как собрал его самую удачную версию.

Шаг 8: Собираем прибор





Чтобы собрать ZVS-драйвер, вам нужно следовать приложенной схеме. Сначала я взял зенеровский диод и соединил с 10К резистором. Эту пару деталей можно сразу припаять между стоком и истоком МДП-транзистора. Убедитесь, что зенеровский диод смотрит на сток. Потом припаяйте МДП-транзисторы к макетной плате с контактными отверстиями. На нижней стороне макетной платы припаяйте два быстрых диода между затвором и стоком каждого из транзисторов.

Убедитесь, что белая линия смотрит на затвор (рис.2). Затем соедините плюс от вашего блока питания со стоками обоих транзисторов через 2 220 Ом резистора. Заземлите оба истока. Припаяйте рабочую спираль и конденсаторную батарею параллельно друг другу, затем припаяйте каждый из концов к разным затворам. Наконец, подведите ток к затворам транзисторов через 2 50 мкгн дросселя. У них может быть тороидальный сердечник с 10 витками проволоки. Теперь ваша схема готова к использованию.

Шаг 9: Установка на основание

Чтобы все части вашего индукционного нагревателя держались вместе, им нужно основание. Я взял для этого деревянный брусок 5*10 см. плата с электросхемой, конденсаторная батарея и рабочая спираль были приклеены на термоклей. Мне кажется, агрегат выглядит круто.

Шаг 10: Проверка работоспособности





Чтобы ваш нагреватель включился, просто подсоедините его к источнику питания. Потом поместите предмет, который вам нужно нагреть, в середину рабочей спирали. Он должен начать нагреваться. Мой нагреватель раскалил скрепку до красного свечения за 10 секунд. Предметы крупнее, как гвозди, нагревались примерно за 30 секунд. В процессе нагревания потребление тока выросло приблизительно на 2 А. Этот нагреватель можно использовать не только для развлечения.

После использования прибора не образуется сажи или дыма, он воздействует даже на изолированные металлические объекты, например, газопоглотители в вакуумных трубках. Также прибор безопасен для человека – с пальцем ничего не случится, если поместить его в центр рабочей спирали. Однако, можно обжечься о предмет, который был нагрет.

Спасибо за чтение!

Чтоб нагреть до красна или даже расплавить небольшой металлический предмет в домашних условиях, совсем не обязательно раскочегаривать печку и переводить топливо - современные технологии позволяют для этого задействовать токи высокой частоты (ТВЧ). И простейшей (и самый распространённой) схемой индукционного нагревателя металлов будет мультивибратор на полевых транзисторах. По крайней мере эти модули с китайских сайтов собирают как раз . Далее смотрите 2 модели, отличающиеся мощностью и, конечно, ценой.

ZVS50 - модуль индукционного нагрева начального уровня, питание модуля допустимо даже от батарей с напряжением до 12 вольт, то есть как от автономного питания, так и от сетевого БП. Цена на www.banggood.com примерно $8.

  • Входное напряжение: 5-12 В
  • Размеры платы: 5,5 х 4 х 2 см
  • Размер катушки: длина 2.8, диаметр 2 см

ZVS1000 - модуль индукционного нагрева металлов токами высокой частоты, с мощностью до 1000w. Средняя цена $35.

Данный блок индукционного нагрева использует источник питания постоянного тока 12-48 В, максимальный ток 20 А, максимальная мощность 1000 Ватт. Может быть использован для обработки мелких деталей: закалка, отжиг и другая термической обработка. Также может быть использован с тиглем, чтоб плавить золото, серебро, медь, алюминий и другие металлы. Быстрый и равномерный нагрев, что очень удобно для ювелиров.

  • Внутренний диаметр катушки: 40 мм
  • Высота катушки: 50 мм
  • При 48 В без нагрузки ток 5 А

Чем выше напряжение, тем больше ток нагрева, а значит и мощность передаваемая в металл. Катушка может принять внутрь 40 мм тигель. Использовать устройство надо с блоками питания соответствующей мощности и поставить на радиатор кулер охлаждения.

Размер объекта, что нагревается внутри индукционной катушки не может превышать 1/4 объема, иначе может произойти перегрузка и сгорание схемы. Хотя эта схема может временно выдержать 30 А - для долгосрочной работы ток не должен превышать 20 А для безопасной работы.

Из товаров предоставленных на обзор, выбор пал на этот индукционный нагреватель. Зачем он мне..?

Вихревой индукционный нагреватель. Пару слов теории.
«В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.
Если внутрь индуктора поместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.
Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается.»
«Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.
На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки (скин-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое плотность тока увеличивается в несколько раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепло­выделе­ния. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относи­тель­ной магнитной проницаемости материала заготовки.
Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.
Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.»
В нашем случае индуктором является не медная трубка, а кусок медного провода скрученный в спираль.
Для себя, я лично наметил только одно полезное применение такому мисиписечному нагревателю. Разогрев, а потом по возможности закалка переточенных кончиков всяких разных отверточек, шильцев и ковырялок…
Заявленные ТТХ:
- Питание модуля: 5-12V
- Размеры: 5,5 х 4 х 2 см (L * W * H)
- Размер катушки: длина: 7.5cм, диаметр: 2,8 см
- Диаметр провода индуктора:
Комплект:
- модуль: 1 шт.
- катушка: 1шт.
Больше нам о нем пока ничего не известно. Ну что ж, проверим на что он способен и соответствует ли моим ожиданиям…
Приехал модуль в таком виде.




Размеры, чуть больше спичечного коробка, не считая дросселей.
Ширина платки - 37 мм.
Длина платки 55 мм.
Высота от низа кондеров до верха дросселей - 45 мм.


Размеры и диаметр катушки.
Длина катушки - 35 мм.
Диаметр - 22 мм.
Диаметр провода - 2 мм.
Длина катушки с выводами -70 мм.
Вес конструкции в сборе 114 грамм.


На платке есть надписи с рекомендуемым напряжением питания, его полярностью на разъеме.


С обратной стороны платки имеется разъем для подключения катушки.


Снизу кондеры.


Распаиваем модуль.
Сама платка сделана очень неплохо. Снизу шелкография, изображение скорпионов. Наверное какой-то фирменный знак производителя печатных плат. Надписи на транзисторах сточены напильником. :0)


Рисуем схему.
Схема оказалась самой распространенной в интернете. Хотя на данной плате стерта маркировка транзисторов и не удалось расшифровать маркировку стабилитронов, погуглив подобную схему легко найти в интернете. Хотя вполне возможно, что детали стоят несколько другие, но не суть важно. Легко найти аналог на замену при неисправности.


Используемые конденсаторы.


Теперь все собираем, прикручиваем катушку и подаем питание. Загорается синий светодиодик.


Токи на холостом ходу.


Токи под нагрузкой. В качестве «нагрузки» использовал трехгранный надфиль.


Частота генератора на холостом ходу 214 кГц, под нагрузкой падает до 210 кГц.


Маленькое видео нагрева кончика трехгранного надфиля.


Индукционный нагреватель работает, но очень много кушает на холостом ходу.
Транзисторы распаянные на плате довольно прилично греются, плата плоховато рассеивает тепло. Если платку доработать, поставить транзисторы по мощнее да вынести их на радиаторы, может получиться вполне себе нагреватель. Чем я и займусь в ближайшем будущем.
Посоветовал бы я купить? Наверное да, но не как рабочее законченное изделие, а скорее как ознакомительную версию с возможностью небольшого допила. Ну и если деньги лишние. :0)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +55 +103

Вот проект индукционного нагревателя металлов простейшей конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который делают радиолюбители.

Принцип действия ТВЧ установки

Катушка создает высокочастотное магнитное поле, и в металлическом предмете в середине катушки возникают вихревые токи, которые будут его разогревать. Даже маленькие катушки раскачивают ток около 100 A, поэтому параллельно с катушкой, подключена резонансная емкость, которая компенсирует ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.


ТВЧ катушка самодельная

Схема принципиальная электрическая


Схема индукционного нагревателя от 12В

Вот оригинальная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного тут нет — купить придётся только полевые транзисторы, использовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специальные высоковольтные, а питание будет от автомобильного аккумулятора 70 А/ч — он будет очень хорошо держать ток.

Проект на удивление оказался успешным — всё заработало, хоть и собрано было «на коленке» за час. Особенно порадовало что не требует сеть 220 В — авто аккумуляторы позволяют питать её хоть в полевых условиях (кстати, может из неё походную микроволновку сделать?). Можно поэкспериментировать в направлении чтобы снизить напряжение питания до 4-8 В как от литиевых АКБ (для миниатюризации) с сохранением хорошей эффективности нагрева. Массивные металлические предметы конечно плавить не получится, но для мелких работ пойдёт.

Ток потребления от источника питания 11 А, но после прогрева падает до примерно 7 A, потому что сопротивление металла при нагреве заметно увеличивается. И не забудьте сюда использовать толстые провода, способные выдержать более 10 А тока, иначе провода при работе станут горячие.


Нагрев отвертки до синего цвета ТВЧ
Нагрев ножа ТВЧ

Второй вариант схемы — с питанием от сети

Чтоб удобнее настраивать резонанс можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраивается регулятором 100к в резонанс. Частотами можно управлять в диапазоне примерно 20 — 200 кГц. Схема управления нуждается в вспомогательном напряжении 12-15 В от сетевого адаптера, а силовая часть через диодный мост может быть подключена напрямую к сети 220 В. Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8×10 мм.


Схема индукционного нагревателя от сети 220В

Рабочая катушка ТВЧ должна быть из толстой проволоки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через некоторое время сильно нагревается. Резонансная частота около 30 кГц. Эта самодельная установка индукционного нагрева собрана в пластиковом корпусе и работает уже более года.



Рассказать друзьям