Как запомнить точки на единичной окружности. Урок "определение синуса и косинуса на единичной окружности" Число 2 на единичной окружности

💖 Нравится? Поделись с друзьями ссылкой

Решение:

1) Так как 7π = 3٠2π + π , то при повороте на 7π получается та же самая точка, что и при повороте на π, т.е. получается точка с координатами (- 1; 0). (рис.9)

2) Так как = -2π - , то при повороте на получается та же самая точка, что и при повороте на - , т.е. получается точка с координатами (0; 1) (рис.10)

Рис.9 Рис.10

Задача № 2

Записать все углы, на которые нужно повернуть точку (1;0), чтобы получить точку

N
.

Решение:

Из прямоугольного треугольника АON (рис.11) следует, что угол AON равен , т.е. один из возможных углов поворота равен . Следовательно, все углы, на которые нужно повернуть точку (1;0), чтобы получить точку , выражаются так: + 2πk, где k – любое целое число.

Рис.11

Упражнения для самостоятельного решения:

1°. На единичной окружности построить точку, полученную поворотом точки (1;0) на заданный угол:

а) 4π; б) - 225°; в) - ; г) -; д)
; е)
.

2°. Найти координаты точки, полученной поворотом точки Р(1;0) на угол:

а) 3π; б) -
; в) 540°;

г) 810°; д)
, k – целое число; е)
.

3°. Определить четверть, в которой расположена точка, полученная поворотом точки Р(1;0) на угол:

а) 1; б) 2,75; в) 3,16; г) 4,95.

4*. На единичной окружности построить точку, полученную поворотом точки Р(1;0) на угол:

а)
; б)
; в) 4,5π; г) - 7π.

5*. Найти координаты точки, полученной поворотом точки Р (1;0) на угол (k – целое число):

а)
; б)
; в)
; г)
.

6*. Записать все углы, на которые нужно повернуть точку Р (1;0), чтобы получить точку с координатами:

а)
; б)
;

в)
; г)
.

ОПРЕДЕЛЕНИЕ СИНУСА, КОСИНУСА УГЛА

Рис.12

В этих определениях угол α может выражаться как в градусах, так и в радианах. Например, при повороте точки (1;0) на угол , т.е. угол 90°, получается точка (0;1). Ордината точки (0 ;1 ) равна 1 , поэтому sin = sin 90° = 1; абсцисса этой точки, равна 0 , поэтому cos = cos 90° = 0

Задача №1

Найти sin (- π) и cos (- π).

Решение:

Точка (1;0) при повороте на угол – π перейдет в точку (-1; 0) (рис.13), следовательно, sin (- π) = 0, cos (- π) = - 1.

Рис.13

Задача №2

Решить уравнение sin x = 0.

Решение:

Решить уравнение sin x = 0 – это значит найти все углы, синус которых равен нулю. Ординату, равную нулю, имеют две точки единичной окружности (1;0 )и (- 1; 0 ). Эти точки получаются из точки (1;0) поворотом на углы 0, π, 2π, 3π и т.д., а также на углы - π, - 2π, - 3π и т.д.. следовательно, sin x = 0 при х = πk.,где k – любое целое число т.е. решение можно оформить так:

х = πk., k
.

Ответ: х = πk., k

(Z – обозначение множества целых чисел, читается «k принадлежит Z»).

Рассуждая аналогично можно получить следующие решения тригонометрических уравнений:

sin x

х = + 2πk, k

х = - +2πk., k

х = +2πk., k

х = 2πk., k

х = π + 2 πk., k

Приведем таблицу часто встречающихся значений синуса, косинуса, тангенса и котангенса.

Задача №1

Вычислить: 4sin +
cos - tg.

Решение:

Используя таблицу, получаем

4 sin + cos - tg = 4 ٠+ ٠ -1 = 2 + 1,5 = 2,5.

:

1°. Вычислить:

а) sin + sin ; б) sin - cos π; в) sin 0 - cos 2π; г) sin3 - cos .

2°. Найти значение выражения:

а) 3 sin + 2 cos - tg; б)
;

в)
; г) cos 0 – sin 3π.

3°. Решить уравнение:

а) 2 sin x = 0; б) cos x = 0; в) cos x - 1 = 0; г) 1 – sin x = 0.

4*. Найти значение выражения:

а) 2 sin α +
cos α при α = ; б) 0,5 cos α - sin α при α = 60°;

в) sin 3 α – cos 2 α при α = ; г) cos + sin при α = .

5*. Решить уравнение:

а) sin x = - 1; б) cos x = 0; в) sin
; г) sin3 x = 0.

Знаки синуса, косинуса и тангенса

Пусть точка движется по единичной окружности против часовой стрелки, тогда синус положителен в первой и второй координатных четвертях (рис.14); косинус положителен в первой и четвертой координатных четвертях (рис.15); тангенс и котангенс положителен в первой и третьей координатных четвертях (рис.16).

Рис.14 Рис15 Рис.16

Задача №1

Выяснить знаки синуса, косинуса и тангенса угла:

1) ; 2) 745°; 3)
.

Решение:

1) Углу соответствует точка единичной окружности, расположенная во второй четверти. Поэтому sin > 0, cos

2) Так как 745° = 2 ٠360° + 25° , то повороту точки (1;0) на угол 745° соответствует точка, расположенная в первой четверти.

Поэтому sin 745 ° > 0, cos 745° > 0, tg 745° > 0.

3) Точка движется по часовой стрелке, поэтому – π , то при повороте точки (1;0) на угол получается точка третьей четверти. Поэтому sin

Упражнения для самостоятельного решения :

1°. В какой четверти находится точка, полученная поворотом точки Р(1;0) на угол α, если:

а) α = ; б) α = - ; в) α = ;Документ

Ее решением. Контрольная работа должна быть подписана студентом. Зачет по контрольной работе выставляется по результатам... на одной из шести одинаковых карточек . Карточки раскладываются в ряд в случайном порядке. Какова...

  • Карточки-тесты; карточки для зачета; g) карточки заданий повышенного уровня (текстовые задачи задания с параметром). Заключение

    Тесты

    Устной работы . карточки -тренажеры; карточки для математического диктанта; карточки -тесты; карточки для зачета ; g) карточки ... контролирующие, обобщающего, исследовательского характера, контрольные работы и зачеты . Материалы учитывают два уровня глубины...

  • Самостоятельная работа, являясь важнейшим средством образования, должна строиться на основе научной организации умственного труда, которая требует соблюдения следующих положений

    Памятка

    Классификация) изучаемой книги. Карточки можно использовать стандартные или... студенты, сдавшие все зачеты и (или) контрольные работы , предусмотренные учебным планом, ... зачетная книжка или копия учебной карточки студента, а к заявлению о восстановлении...

  • Методические указания к изучению дисциплины и выполнению контрольной работы для студентов заочной формы обучения Специальности все

    Методические указания

    В контрольной работе . 3. Методические указания к выполнению контрольной работы Контрольная работа является важным этапом подготовки к сдаче зачета по... в таблицу 2 – о трех подразделениях. Создать форму «Карточка учета» для ввода данных в таблицу...

  • Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

    • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
    • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).

    Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).
  • >> Числовая окружность


    Изучая курс алгебры 7-9-го классов, мы до сих пор имели дело с алгебраическими функциями, т.е. функциями, заданными аналитически выражениями, в записи которых использовались алгебраические операции над числами и переменной (сложение, вычитание, умножение, деление , возведение в степень, извлечение квадратного корня). Но математические модели реальных ситуаций часто бывают связаны с функциями другого типа, не алгебраическими. С первыми представителями класса неалгебраических функций - тригонометрическими функциями - мы познакомимся в этой главе. Более детально изучать тригонометрические функции и другие виды неалгебраических функций (показательные и логарифмические) вам предстоит в старших классах.
    Для введения тригонометрических функций нам понадобится новая математическая модель - числовая окружность, с которой вы до сих пор не встречались, зато хорошо знакомы с числовой прямой. Напомним, что числовая прямая - это прямая, на которой заданы начальная точка О, масштаб (единичный отрезок) и положительное направление. Любое действительное число мы можем сопоставить с точкой на прямой и обратно.

    Как по числу х найти на прямой соответствующую точку М? Числу 0 соответствует начальная точка О. Если х > 0, то, двигаясь по прямой из точки 0 в положительном направлении, нужно пройти п^ть длиной х; конец этого пути и будет искомой точкой М(х). Если х < 0, то, двигаясь по прямой из точки О в отрицательном направлении, нужно пройти путь 1*1; конец этого пути и будет искомой точкой М(х). Число х - координата точки М.

    А как мы решали обратную задачу, т.е. как искали координату х заданной точки М на числовой прямой? Находили длину отрезка ОМ и брали ее со знаком «+» или * - » в зависимости от того, с какой стороны от точки О расположена на прямой точка М.

    Но в реальной жизни двигаться приходится не только по прямой. Довольно часто рассматривается движение по окружности . Вот конкретный пример. Будем считать беговую дорожку стадиона окружностью (на самом деле это, конечно, не окружность, но вспомните, как обычно говорят спортивные комментаторы: «бегун пробежал круг», «до финиша осталось пробежать полкруга» и т.д.), ее длина равна 400 м. Отмечен старт - точка А (рис. 97). Бегун из точки А движется по окружности против часовой стрелки. Где он будет через 200 м? через 400 м? через 800 м? через 1500 м? А где провести финишную черту, если он бежит марафонскую дистанцию 42 км 195 м?

    Через 200 м он будет находиться в точке С, диаметрально противоположной точке А (200 м - это длина половины беговой дорожки, т.е. длина половины окружности). Пробежав 400 м (т.е. «один круг», как говорят спортсмены), он вернется в точку А. Пробежав 800 м (т.е. «два круга»), он вновь окажется в точке А. А что такое 1500 м? Это «три круга» (1200 м) плюс еще 300 м, т.е. 3

    Беговой дорожки - финиш этой дистанции будет в точке 2) (рис. 97).

    Нам осталось разобраться с марафоном. Пробежав 105 кругов, спортсмен преодолеет путь 105-400 = 42 000 м, т.е. 42 км. До финиша остается 195 м, это на 5 м меньше половины длины окружности. Значит, финиш марафонской дистанции будет в точке М, расположенной около точки С (рис. 97).

    Замечание. Вы, разумеется, понимаете условность последнего примера. Марафонскую дистанцию по стадиону никто не бегает, максимум составляет 10 000 м, т.е. 25 кругов.

    По беговой дорожке стадиона можно пробежать или пройти путь любой длины. Значит, любому положительному числу соответствует какая-то точка - «финиш дистанции». Более того, можно и любому отрицательному числу поставить в соответствие точку окружности: просто надо заставить спортсмена бежать в противоположном направлении, т.е. стартовать из точки А не в направлении против,ав направлении по часовой стрелке. Тогда беговую дорожку стадиона можно рассматривать как числовую окружность.

    В принципе, любую окружность можно рассматривать как числовую, но в математике условились использовать для этой цели единичную окружность - окружность с радиусом 1. Это будет наша «беговая дорожка». Длина Ь окружности с радиусом К вычисляется по формуле Длина половины окружности равна n, а длина четверти окружности - АВ, ВС, СБ, DА на рис. 98 - равна Условимся называть дугу АВ первой четвертью единичной окружности, дугу ВС - второй четвертью, дугу СB - третьей четвертью, дугу DА - четвертой четвертью (рис. 98). При этом обычно речь идет об Открытой дуге, т.е. о дуге без ее концов (что-то вроде интервала на числовой прямой).


    Определение. Дана единичная окружность, на ней отмечена начальная точка А - правый конец горизонтального диаметра (рис. 98). Поставим в соответствие каждому действительному числу I точку окружности по следующему правилу:

    1) если x > 0, то, двигаясь из точки А в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь длиной и конечная точка М этого пути и будет искомой точкой: М = М(x);

    2) если x < 0, то, двигаясь из точки А в направлении по часовой стрелке (отрицательное направление обхода окружности), опишем по окружности путь длиной и |; конечная точка М этого пути и будет искомой точкой: М = М(1);

    0 поставим в соответствие точку А: А = А(0).

    Единичную окружность с установленным соответствием (между действительными числами и точками окружности) будем называть числовой окружностью.
    Пример 1. Найти на числовой окружности
    Так как первые шесть из заданных семи чисел положительны, то для отыскания соответствующих им точек на окружности нужно пройти по окружности путь заданной длины, двигаясь из точки А в положительном направлении. Учтем при этом, что


    Числу 2 соответствует точка А, так как, пройдя по окружности путь длиной 2, т.е. ровно одну окружность, мы снова попадем в начальную точку А Итак, А = А(2).
    Что такое Значит, двигаясь из точки А в положительном направлении, нужно пройти целую окружность.

    Замечание. Когда мы в 7-8-м классах работали с числовой прямой, то условились, ради краткости, не говорить «точка прямой, соответствующая числу х», а говорить «точка х». Точно такой же договоренности будем придерживаться и при работе с числовой окружностью: «точка f» - это значит, что речь идет о точке окружности, которая соответствует числу
    Пример 2.
    Разделив первую четверть АВ на три равные части точками К и Р, получим:

    Пример 3. Найти на числовой окружности точки, соответствующие числам
    Построения будем делать, пользуясь рис. 99. Отложив дугу АМ (ее длина равна -) от точки А пять раз в отрицательном направлении, получим точку!, - середину дуги ВС. Итак,

    Замечание. Обратите внимание на некоторую вольность, которую мы позволяем себе в использовании математического языка. Ясно, что дуга АК и д л ина дуги АК - разные вещи (первое понятие - геометрическая фигура, а второе понятие - число). Но обозначается и то и другое одинаково: АК. Более того, если точки А и К соединить отрезком, то и полученный отрезок, и его длина обозначаются так же: АК. Обычно из контекста бывает ясно, какой смысл вкладывается в обозначение (дуга, длина дуги, отрезок или длина отрезка).

    Поэтому нам очень пригодятся два макета числовой окружности.

    ПЕРВЫЙ МАКЕТ
    Каждая из четырех четвертей числовой окружности разделена на две равные части, и около каждой из имеющихся восьми точек записаны их «имена» (рис. 100).

    ВТОРОЙ МАКЕТ Каждая из четырех четвертей числовой окружности разделена на три равные части, и около каждой из имеющихся двенадцати точек записаны их «имена» (рис. 101).


    Учтите, что на обоих макетах мы могли бы заданным точкам присвоить и другие «имена».
    Заметили ли вы, что во всех разобранных примерах длины дуг
    выражались некоторыми долями числа п? Это неудивительно: ведь длина единичной окружности равна 2п, и если мы окружность или ее четверть делим на равные части, то получаются дуги, длины которых выражаются долями числа и. А как вы думаете, можно ли найти на единичной окружности такую точку Е, что длина дуги АЕ будет равна 1? Давайте прикинем:

    Рассуждая аналогичным образом, делаем вывод, что на единичной окружности можно найти и точку Ег, для которой АЕ, = 1, и точку Е2, для которой АЕг = 2, и точку Е3, для которой АЕ3 = 3, и точку Е4, для которой АЕ4 = 4, и точку Еь, для которой АЕЪ = 5, и точку Е6, для которой АЕ6 = 6. На рис. 102 отмечены (приблизительно) соответствующие точки (причем для ориентировки каждая из четвертей единичной окружности разделена черточками на три равные части).


    Пример 4. Найти на числовой окружности точку, соответствующую числу -7.

    Нам нужно, отправляясь из точки А(0) и двигаясь в отрицательном направлении (в направлении по часовой стрелке), пройти по окружности путь длиной 7. Если пройти одну окружность, то получим (приближенно) 6,28, значит, нужно еще пройти (в том же направлении) путь длиной 0,72. Что же это за дуга? Немного меньше половины четверти окружности, т.е. ее длина меньше числа -.

    Итак, начисловой окружности, как и начисловой прямой, каждому действительному числу соответствует одна точка (только, разумеется, на прямой ее найти легче, чем на окружности). Но для прямой верно и обратное: каждая точка соответствует единственному числу. Для числовой окружности такое утверждение неверно, выше мы неоднократно убеждались в этом. Для числовой окружности справедливо следующее утверждение.
    Если точка М числовой окружности соответствует числу I, то она соответствует и числу вида I + 2як, где к - любое целое число (к е 2).

    В самом деле, 2п - длина числовой (единичной) окружности, а целое число |й| можно рассматривать как количество полных обходов окружности в ту или другую сторону. Если, например, к = 3, то это значит, что мы делаем три обхода окружности в положительном направлении; если к = -7, то это значит, что мы делаем семь (| к | = | -71 = 7) обходов окружности в отрицательном направлении. Но если мы находимся в точке М(1), то, выполнив еще | к | полных обходов окружности, мы снова окажемся в точке М.

    А.Г. Мордкович Алгебра 10 класс

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

    Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

    Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

    • четвертям - 0 или 2π, π/2, π, (2π)/3,
    • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
    • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

    На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

    Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

    Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

    Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

    Конец третьей четверти: D ((2π)/3) = D (0; -1).

    Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

    Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

    Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

    Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

    В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
    M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
    M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
    M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

    При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

    Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
    x 2 + (½) 2 = 1 2
    x 2 = 1 - ¼ = ¾
    x = √3/2

    Таким образом T 1 (π/6) = T 1 (√3/2; ½).

    Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

    Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
    T 3 ((2π)/3) = T 3 (-½; √3/2)
    T 4 ((5π)/6) = T 4 (-√3/2; ½)
    T 5 ((7π)/6) = T 5 (-√3/2; -½)
    T 6 ((4π)/3) = T 6 (-½; -√3/2)
    T 7 ((5π)/3) = T 7 (½; -√3/2)
    T 8 ((11π)/6) = T 8 (√3/2; -½)

    При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

    Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

    Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

    Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

    Расположение точек на числовой окружности

    Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

    Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

    Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

    Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

    Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

    Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

    И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

    Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

    Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

    Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

    Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

    Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

    Числа не кратные π на числовой окружности

    Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.



    Рассказать друзьям