Магнитное поле определение и свойства. Магнитное поле, характеристика магнитного поля

💖 Нравится? Поделись с друзьями ссылкой

На просторах инетрнета есть масса тем, посвященных изучению магнитного поля. Необходимо отметить, что многие из них отличаются от того среднестатистического описания, которое существует в школьных учебниках. Моя задача состоит в том, чтобы собрать и систематизировать весь имеющийся в свободном доступе материал по магнитному полю для того, чтобы сфокусировать Новое Понимание магнитного поля. Изучение магнитного поля и его свойств можно с помощью разнообразных приемов. С помощью железных опилок, например грамотный анализ провел товарищ Фатьянов по адресуhttp://fatyf.narod.ru/Addition-list.htm

С помощью кинескопа. Я не знаю фамилии этого человека, но знаю его ник. Он называет себя "Ветерок". При подносе магнита к кинескопу на экране образуется "сотовая картина". Можно подумать, что "сетка" есть продолжение кинескопной сетки. Это метод визуализации магнитного поля.

Я стал изучать магнитное поле с помощью ферромагнитной жидкости. Именно магнитная жидкость максимально визуализирует все тонкости магнитного поля магнита.

Из статьи "что такое магнит" мы выяснили, что магнит это фрактализированная, т.е. уменьшенная в масштабе копия нашей планеты, магнитная геометрия которой максимально идентична простому магниту. Планета земля, в свою очередь, является копией того, из недр чего она была образована - солнца. Мы выснили, что магнит это своего рода индукционная линза, которая фокусирует на своем объеме все свойства глобального магнита планеты земля. Есть необходимость введения новых терминов, с помощью которых мы будем описывать свойства магнитного поля.

Индукционный поток - это поток, который берет свое начало на полюсах планеты и проходит через нас в геометрии воронки. Северный полюс планеты это вход в воронку, южный полюс планеты это выход воронки. Некоторые ученые называют этот поток эфирным ветром, говоря, что он "имеет галактическое происхождение". Но это не "эфирный ветер" и накакой не эфир, это "индукционная река", которая течет с полюса до полюса. Электричество в молнии имеет ту же самую природу, что и электричество появляемое при взаимодействии катушки и магнита.

Лучшее средство понять что есть магнитое поле - увидеть его. Размышлять и делать бесчисленные теории можно, но с позиции понимания физической сути явления - бесполезно. Думаю что все со мной согласятся, если я повторю слова не помню кого но суть такая что лучший критерий это опыт. Опыт и еще раз опыт.

Дома у себя я делал простые опыты, но много мне позволившие понять. Простой магнит цилиндрической формы... И так его и сяк крутил. Налил на него магнитной жидкости. Стоит зараза, не шевелится. Тут я вспомнил, что на каком то форуме вычитал, что два магнита сдавленные одноименными полюсами в герметичной области - повышают температуру области, а противоположными полюсами наооборот понижают. Если температура следствие взаимодействия полей, то почему бы ей не побыть и причиной? Я нагрел магнит используя "короткое замыкание" от 12 вт и резистор, просто прислонив нагретый резистор к магниту. Магнит нагрелся и магнитная жидкость начала сначало дергаться, а потом и вовсе стала подвижной. Магнитное поле возбуждается температурой. Но как же так, спросил я себя, ведь в букварях пишут о том, что температура ослабляет магнитные свойства магнита. И это правда, но это "ослабление" кагбы компенсируется возбуждением магнитного поля этого магнита. Иными словами магнитная сила не исчезает, но трансформируется в силу возбуждения этого поля. Отлично Все вращается и все кружится. Но почему вращающееся магнитное поле имеет именно такую геометрию вращения, а не какую то другую? На первый взгляд движение хаотично, но если посмотреть через микроскоп, то можно заметить, что в этом движении присутствует система. Система никак не принадлежащая магниту Но только локализующая его. Иными словами, магнит можно рассмотреть как энергетическую линзу, которая фокусирует в своем объеме возмущения.

Магнитное поле возбуждается не только от повышения температуры, но и от ее понижения. Думаю что правильней будет сказать, что магнитное поле возбуждается градиентом температур, чем одним каким то конкретным ее знаком. В том то и дело, что нет видимой "перестройки" структуры магнитного поля. Есть визуализация возмущения, которое проходит через область этого магнитного поля. Представьте себе возмущение, которое движется по спирали от северного полюса до южного через весь объем планеты. Так вот магнитное поле магнита = локальная часть этого глобального потока. Понимаете? Однако у меня нет уверенности в том, какого конкретно потока...Но факт в том, что потока. Причем потоков не один, а два. Первый внешний, а второй внутри него и вместе с первым движется, но в обратную сторону вращается. Магнитное поле возбуждается из-за градиента температуры. Но мы опять искажаем суть, когда говорим "магнитное поле возбуждается". Дело в том, что оно уже находится в возбужденном состоянии. Когда мы прикладываем градиент температур, мы искажаем это возбуждение до состояния повяления разбалансировки. Т.е. понимаем, что процесс возбуждения это постоянный процесс, в котором находится магнитное поле магнита. Градиент он искажает параметры этого процесса так, что мы оптически замечаем разницу между нормальным его возбуждением и тем возбуждением, которое вызвано градиентом.

Но почему в стационарном состоянии магнитное поле магнита неподвижно? НЕТ, оно также подвижно, но относительно движущихся систем отсчета, например нас, оно неподвижно. Мы движемся в пространстве с этим возмущением Ра и оно нам кажется наподвижным. Температура, которую мы прикладываем к магниту, создает кагбы местную разбалансировку этой фокусируемой системы. Появлется некая нестабильность в пространственной решетке, коя есть сотовая структура. Ведь пчелы строят свои дома не на пустом месте, но они кагбы облепляют структуру пространства своим строительным материалом. Таким образом, исходя из чисто опытных наблюдений, делаю вывод, что магнитное поле простого магнита это потенциальная система локальной разбалансировки решетки пространства, в котором как Вы уже догадались нет места атомам и малекулам, которых никто никогда не видел Температура она как "ключ зажигания" в этой локальной системе, включает разбалансировку. В данный момент я тщательно изучаю методы и средства управления этой разбалансировки.

Что есть магнитное поле и чем оно отличается от электромагнитного поля?

Что есть торсионное или энергоинформационное поле?

Это все есть одно и тоже, но локализующееся иными методамим.

Сила тока - есть плюс и сила отталкивания,

напряжение есть минус и сила притяжения,

короткое замыкание, или скажем локальная разбалансировка решетки - есть сопротивление этому взаимопроникновению. Или же взаимопроникновение отца, сына и святого духа. Помним, что метафора "адама и евы" есть старое понимание икс и ыгрик хромосом. Ибо понимание нового, это новое понимание старого. "Сила тока" - вихрь, исходящий от постоянно вращающегося Ра, оставляя позади себя информационное переплетение себя. Напряжение есть еще один вихрь, но внутри основного вихря Ра и движущийся вместе с ним. Визуально это можно представить в виде РАковины, рост которой происходит в направлении двух спиралей. Первая внешняя, вторая внутренняя. Или один внутрь себя и по часовой, а второй из себя и против часовой. Когда два вихря взамопроникают друг в друга, они образуют структуру, наподобии слоев Юпитера, которые движутся в разные стороны. Остается понять, механизм этого взаимопроникновения и система, которая образуется.

Примерные задачи на 2015 год

1. Найти методы и средства управления разбалансировкой.

2. Выявить материалы, наиболее влияющие на разбалансировку системы. Найти зависимость от состояния материала согласно таблицы 11 ребенка.

3. Если всякое живое существо, по своей сути, является такой же самой локализованной разбалансировкой, следовательно ее необходимо "увидеть". Иными словами необходимо найти метод фиксации человека в иных спектрах частот.

4. Главная задача в том, чтобы визуализировать не биологические спектры частот, в которых происходит непрерывный процесс творения человека. Например мы с помощью средства прогресса анализируем спектры частот, не входящие в биологический спектр чувств человека. Но мы их только регестрируем, но мы не можем их "осознать". Поэтому мы не видим дальше, чем могут осознать наши органы чувств. Вот моя главная задача на 2015 год. Найти методику технического осознания не биологического спектра частот с тем, чтобы увидеть информационную основу человека. Т.е. по сути его душу.

Особый вид изучения это магнитное поле в движении. Если мы нальем магнитную жидкость на магнит, она займет объем магнитного поля и будет стационарной. Однако нужно проверить опыт "Ветерка" где он подносил магнит к экрану монитора. Есть предположение что магнитное поле уже находится в возбужденном состоянии, однако объем жидкости его кагбы сдерживает в стационарном состоянии. Но я не прверял пока.

Магнитное поле может возбуждаться посредством приложения температуры к магниту, либо помещением магнита в индукционную катушку. Нужно заметить, что жидкость возбуждается только при определенном пространственном положении магнита внутри катушки, состовляя определенный угол к оси катушки, который можно найти опытным путем.

Я провел десятки опытов с движущейся магнитной жидкостью и поставил себе цели:

1. Выявить геометрию движения жидкости.

2. Выявить параметры, которые влияют на геометрию этого движения.

3. Какое место занимает движение жидкости в глобальном движении планеты Земля.

4. Зависит ли пространственное положение магнита и приобритаемой ей геометрии движения.

5. Почему "ленты" ?

6. Почему ленты скручиваются

7. От чего зависит вектор скручивания лент

8. Почему конусы смещаются только посредством узлов, которые есть вершины соты, причем скручиваются всегда только три близ лежащие ленты.

9. Почему смещение конусов происходит резко, по достижении определенной "накрученности" в узлах?

10. Почему размер конусов пропорционален объему и массе наливаемой на магнит жидкости

11. Почему конус разделен на два ярко выраженных сектора.

12. Какое место это "разделение" занимает в разрезе взаимодействия между полюсами планеты.

13. Как зависит геометрия движения жидкости от времени суток, времени года, солнечной активности, намерения эксперементатора, давления и дополнительных градиентов. Например резкое изменение "холодное горячее"

14. Почему геометрия конусов идентична с геометрией Варджи - специального вооружения возвращающихся богов?

15. Имеются ли данные в архивах специальных служб 5 автоматов какие либо сведения о назначении, наличии или хранении образцов данного вида вооружений.

16. Что говорят выпотрошенные кладовые знания различных тайных организаций об этих конусах и связана ли геометрия конусов со звездой Давида, суть которая есть идентичность геометрии конусов. (масоны, иузеиты, ватиканы, и прочие несогласованные образования).

17. Почему среди конусов всегда есть лидер. Т.е. конус с "коронкой" на вершине, который "организует" движения 5,6,7 конусов вокруг себя.

конуса в момент смещения. Рывок. "...только двигаясь буквой "Г" я к нему дойду"....

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Под термином "магнитное поле" принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

    отдельные вещества: ферримагнетики (металлы - преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;

    движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .


Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:

    постоянные магниты;

    подвижные заряды;

    изменяющееся во времени электрическое поле.


С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем . Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.


Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика


Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное - указывает на ориентацию индукции.


Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.


При этом магниты с разноименными полюсами (N - S) притягиваются друг к другу, а с одноименными (N – N, S - S) - отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

К ним относят:

    вектор магнитной индукции (В );

    магнитный поток (Ф);

    потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ - Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл - это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

1Тл=1∙Н/(А∙м)

Направление вектора В определяется по правилу левой руки.


Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая , оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.


Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Потокосцепление

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.


Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

    электрического;

    магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

    антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;

    диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;

    парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью ;

    ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;

    ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Магнитные цепи

На основе работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье -

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B = Ф /S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

? = ? а /? о (42)

Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

H = B/? а = B/(?? о) (43)

Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

Наверное, нет человека, которому бы хоть раз не приходил в голову вопрос о том, что такое магнитное поле. За всю историю его пытались объяснить эфирными вихрями, причудами магнитными монополиями и многим другим.

Все мы знаем, что магниты, повернутые друг к другу одноименными полюсами, отталкиваются, а разноименными - притягиваются. Эта сила будет

Различаться в зависимости от того, на каком расстоянии две части находятся друг от друга. Получается, что описываемый предмет создает вокруг себя магнитный ореол. Вместе с тем при наложении же двух переменных полей, имеющих одинаковую частоту, когда одно сдвинуто в пространстве относительно другого, получается эффект, который принято называть «вращающееся магнитное поле».

Величина изучаемого предмета определяется силой, с которой магнит притягивается к другому или к железу. Соответственно, чем больше притяжение, тем больше поле. Силу можно измерить при помощи обычных этого на одну сторону кладется небольшой кусочек железа, а на другую - гирьки, предназначенные для уравновешивания металла к магниту.

Для более точного понимания предмета темы следует изучить поля:


Отвечая на вопрос о том, что такое магнитное поле, стоит сказать, что оно есть и у человека. В конце 1960 года, благодаря интенсивному развитию физики, был создан измерительный прибор «СКВИД». Его действие объясняется законами квантовых явлений. Представляет он собой чувствительный элемент магнитометров, используемых для исследования магнитного поля и таких

величин, например, как

«СКВИД» достаточно быстро стали употреблять для измерения полей, которые порождаются живыми организмами и, конечно, человеком. Это дало толчок для развития новых областей исследования, основанных на интерпретации информации, поставляемой таким прибором. Данное направление получило название "биомагнетизм".

Почему же раньше при определении того, что такое магнитное поле, не проводились исследования в данной области? Оказалось, что оно очень слабое у организмов, и его измерение является непростой физической задачей. Связано это с наличием огромного количества магнитных шумов в окружающем пространстве. Поэтому ответить на вопрос о том, что такое магнитное поле человека, и изучить его без использования специализированных мер защиты просто не представляется возможным.

Вокруг живого организма такой "ореол" возникает по трем основным причинам. Во-первых, благодаря ионным точкам, появляющимся как следствие электрической активности мембран клеток. Во-вторых, из-за наличия ферримагнитных мельчайших частиц, попавших случайно или введенных в организм. В-третьих, когда внешние магнитные поля накладываются, получается неоднородная восприимчивость различных органов, которая искажает наложенные сферы.



Рассказать друзьям