Особенности строения мембраны. Особенности строения клеточной мембраны

💖 Нравится? Поделись с друзьями ссылкой

Универсальная биологическая мембрана образована двойным слоем молекул фосфолипидов общей толщиной 6 мкм. При этом гидрофобные хвосты молекул фосфолипидов обращены внутрь, навстречу друг другу, а полярные гидрофильные головки обращены наружу мембраны, навстречу воде. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. В этот двойной слой липидов встроены белки.

Их подразделяют на интегральные (пронизывают весь бислой липидов), полуинтегральные (проникают до половины ли­пидного бислоя), или поверностные (располагаются на внутренней или наружной поверхности липидного бислоя).

При этом белковые молекулы располагаются в липидном бислое мозаично и могут «плавать» в «липидном море» наподобие айсбергов, благодаря текучести мембран. По своей функции эти белки могут быть структурными (поддерживать определённую структуру мембраны), рецепторными (образовывать рецепторы биологически активных веществ), транспортными (осуществляют транспорт веществ через мембрану) и ферментными (катализируют определённые химические реакции). Эта наиболее признанная в настоящее время жидкостно-мозаичная модель биологической мембраны была предложена в 1972 г. Singer и Nikolson.

Мембраны выполняют в клетке разграничительную функцию. Они разделяют клетку на отсеки, компартменты, в которых процессы и химические реакции могут идти независимо друг от друга. Например, агрессивные гидролитические ферменты лизосом, способные расщеплять большинство органических молекул, отделены от остальной цитоплазмы с помощью мемраны. В случае её разрушения происходит самопереваривание и гибель клетки.

Имея общий план строения, разные биологические мембраны клетки различаются по своему химическому составу, организации и свойствам, в зависимости от функций структур, которые они образуют.

Плазматическая мембрана, строение, функции.

Цитолемма – биологическая мембрана, окружающая клетку снаружи. Это самая толстая (10 нм) и сложно организованная мембрана клетки. В её основе лежит универсальная биологическая мембрана, покрытая снаружи гликокаликсом , а изнутри, со стороны цитоплазмы, подмембранным слоем (рис.2-1Б). Гликокаликс (3-4 нм толщины) представлен наружными, углеводными участками сложных белков – гликопротеинов и гликолипидов, входящих в состав мембраны. Эти углеводные цепочки играют роль рецепторов, обеспечивающих распознавание клеткой соседних клеток и межклеточого вещества и взаимодействие с ними. В этот слой также входят поверхностные и полуинтегральные белки, функциональные участки которых находятся в надмембранной зоне (например, иммуноглобулины). В гликокаликсе находятся рецепторы гистосовместимости, рецепторы многих гормонов и нейромедиаторов.

Подмембранный, кортикальный слой образован микротрубочками, микрофибриллами и сократимыми микрофиламентами, которые являются частью цитоскелета клетки. Подмембранный слой обеспечивает поддержание формы клетки, создание её упругости, обеспечивает изменения клеточной поверхности. За счёт этого клетка участвует в эндо- и экзоцитозе, секреции, движении.

Цитолемма выполняет множество функций :

1) разграничительная (цитолемма отделяет, отграничивает клетку от окружающей среды и обеспечивает её связь с внешней средой);

2) распознавание данной клеткой других клеток и прикрепление к ним;

3) распознавание клеткой межклеточного вещества и прикрепление к его элементам (волокнам, базальной мембране);

4) транспорт веществ и частиц в цитоплазму и из неё;

5) взаимодействие с сигнальными молекулами (гормонами, медиаторами, цитокинами) благодаря наличию на её поверхности специфических рецепторов к ним;

  1. обеспечивает движение клетки (образование псевдоподий) благодаря связи цитолеммы с сократимыми элементами цитоскелета.

В цитолемме расположены многочисленные рецепторы , через которые биологически активные вещества (лиганды, сигнальные молекулы, первые посредники : гормоны, медиаторы, факторы роста) действуют на клетку. Рецепторы представляют собой генетически детерминированные макромолекулярные сенсоры (белки, глико- и липопротеины) встроенные в цитолемму или расположенные внутри клетки и специализированные на восприятии специфических сигналов химической или физической природы. Биологически актив­ные вещества при взаимодействии с рецептором вызывают каскад биохимических изменений в клетке, трансформируясь при этом в конкретный физиологический ответ (изменение функции клетки).

Все рецепторы имеют общий план строения и состоят из трёх частей: 1) надмебранной, осуществляющей взаимодействие с веществом (лигандом); 2) внутримембранной, осуществляющей перенос сигнала и 3) внутриклеточной, погружённой в цитоплазму.

Виды межклеточных контактов.

Цитолемма участвует также в образовании специальных структур – межклеточных соединений, контактов , которые обеспечивают тесное взаимодействие между рядом расположенными клетками. Различают простые и сложные межклеточные соединения. В простых межклеточных соединениях цитолеммы клеток сближаются на расстояние 15-20 нм и молекулы их гликокаликса взаимодействуют друг с другом (рис. 2-3). Иногда выпячивание цитолеммы одной клетки входит в углубление соседней клетки, образуя зубчатые и пальцевидные соединения (соединения «по типу замка»).

Сложные межклеточные соединения бывают нескольких видов: запирающие, сцепляющие и коммуникационные (рис. 2-3). К запирающим соединениям относят плотный контакт или запирающую зону . При этом интегральные белки гликокаликса соседних клеток образуют подобие ячеистой сети по периметру соседних эпителиальных клеток в их апикальных частях. Благодаря этому межклеточные щели запираются, отграничиваются от внешней среды (рис. 2-3).

Рис. 2-3. Различные типы межклеточных соединений.

  1. Простое соединение.
  2. Плотное соединение.
  3. Адгезивный поясок.
  4. Десмосома.
  5. Полудесмосома.
  6. Щелевое (коммуникационное) соединение.
  7. Микроворсинки.

(По Ю. И. Афанасьеву, Н. А. Юриной).

К сцепляющим , заякоревающим соединениям относят адгезивный поясок и десмосомы. Адгезивный поясок располагается вокруг апикальных частей клеток однослойного эпителия. В этой зоне интегральные гликопротеиды гликокаликса соседних клеток взаимодействуют между собой, а к ним со стороны цитоплазмы подходят подмембранные белки, включающие пучки актиновых микрофиламентов. Десмосомы (пятна сцепления) – парные структуры размером около 0,5 мкм. В них гликопротеиды цитолеммы соседних клеток тесно взаимодействуют, а со стороны клеток в этих участках в цитолемму вплетаются пучки промежуточных филаментов цитоскелета клеток (рис. 2-3).

К коммуникационным соединениям относят щелевидные соединения (нексусы) и синапсы . Нексусы имеют размер 0,5-3 мкм. В них цитолеммы соседних клеток сближаются до 2-3 нм и имеют многочисленные ионные каналы. Через них ионы могут переходить из одной клетки в другую, передавая возбуждение, например, между клетками миокарда. Синапсы характерны для нервной ткани и встречаются между нервными клетками, а также между нервными и эффекторными клетками (мышечными, железистыми). Они имеют синаптическую щель, куда при прохождении нервного импульса из пресинаптической части синапса выбрасывается нейромедиатор, передающий нервный импульс на другую клетку (подробнее см. в главе «Нервная ткань»).

Основные мембраны клетки:

Плазматическая мембрана

Плазматическая мембрана, окружающая каждую клетку, определяет её величину, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Мембрана участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции.

Ядерная мембрана

Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро.

Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса - ламина А, ламина В и ламина С. Важная функция этих белков - дезинтеграция ядерной оболочки в процессе митоза.

Мембрана эндоплазматического ретикулума (ЭР)

Мембрана ЭР имеет многочисленные складки и изгибы. Она образует непрерывную поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом, а также секретируемых белков. Области ЭР, не содержащие рибосом, называют гладким ЭР. Здесь происходит завершающий этап биосинтеза холестерина, фосфолипидов, реакции окисления собственных метаболитов и чужеродных веществ с участием мембранных ферментов - цитохрома Р 450 , цитохром Р 450 редуктазы, цитохром b 5 редуктазы и цитохрома b 5

Аппарат Гольджи

Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов.

Митохондриальные мембраны

Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков (меньше 10 кД). Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям удерживать белки межмембранного пространства от утечки в цитозоль.

Для внутренней мембраны митохондрий характерно высокое содержание белков, около 70%, которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в матрикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ.

Мембрана лизосом

Мембрана лизосом играет роль "щита" между активными ферментами (более 50), обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, например АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (рН 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Такие мембраны, защищают их от действия протеаз.

Общие функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Общие свойства биологических мембран

Все без исключения клеточные мембраны построены по общему принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который включены молекулы белка. В весовом отношении в зависимости от типа мембран на долю липидов приходится 25-60%, на долю белков 40-75%. В состав многих мембран входят углеводы, количество которых может достигать 2-10%.

Биологические мембраны весьма избирательно пропускают вещества из окружающего раствора. Они довольно легко пропускают воду и задерживают большинство веществ, растворимых в воде, и в первую очередь ионизированные вещества или несущие электрический заряд. В силу этого в солевых растворах биомембраны являются хорошими электроизоляторами.

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы "растворены" в липидном бислое

Поперечный разрез плазматической мембраны

Липидный состав мембран:

Фосфолипиды. Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов, причём они распределены неравномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных "головок", так и ацильных остатков.

Специфические фосфолипиды внутренней мембраны митохондрий - кардиолипины (дифосфатидилглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты. Они синтезируются ферментами внутренней мембраны митохондрий и составляют около 22% от всех фосфолипидов мембраны.

В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины. Сфингомиелины построены на основе церамида - ацилированного аминоспирта сфингозина. Полярная группа состоит из остатка фосфорной кислоты и холина, этаноламина или серина. Сфингомиелины - главные липиды миелиновой оболочки нервных волокон.

Гликолипиды. В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у первого углеродного атома церамида. В зависимости от длины и строения углеводной части различаютцереброзиды, содержащие моно- или олигосахаридный остаток, иганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA).

Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей, проявляющих антигенные свойства.

Холестерол. Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой".

Для животной клетки среднее молярное отношение холестерол/фосфолипиды равно 0,3-0,4, но в плазматической мембране это соотношение гораздо выше (0,8-0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков, и поэтому может влиять на функции: мембранных белков.

В составе мембран растений холестерола нет, а присутствуют растительные стероиды - ситостерол и стигмастерол.

Белки мембран: принято делить на интегральные (трансмембранные) и периферические. Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде. С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки. Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов. Периферические белки связаны с поверхностью липидного бислоя электростатическими силами и могут быть отмыты от мембраны солевыми растворами.

23. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, первично-активный транспорт, вторично-активный транспорт, регулируемые каналы (примеры). Перенос через мембрану макромолекул и частиц. Участие мембран в межклеточных взаимодействиях.

Существует несколько механизмов транспорта веществ через мембрану .

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Облегчённая диффузия веществ

В мембранах клеток существуют белки-транслоказы. Взаимодействуя со специфическим лигандом, они обеспечивают его диффузию (транспорт из области большей концентрации в область меньшей) через мембрану. В отличие от белковых каналов, транслоказы в процессе взаимодействия с лигандом и переноса его через мембрану претерпевают конформационные изменения. Кинетически перенос веществ облегчённой диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью Vmax. Поэтому скорость транспорта веществ облегчённой диффузией зависит не только от градиента концентраций переносимого лиганда, но и от количества белков-переносчиков в мембране.

Существуют транслоказы, переносящие только одно растворимое в воде вещество с одной стороны мембраны на другую. Такой простой транспорт называют "пассивный унипорт". Примером унипорта может служить функционирование ГЛЮТ-1 - транслоказы, переносящей глюкозу через мембрану эритроцита:

Облегчённая диффузия (унипорт) глюкозы в эритроциты с помощью ГЛЮТ-1 (S - молекула глюкозы). Молекула глюкозы связывается переносчиком на наружной поверхности плазматической мембраны. Происходит конформационное изменение, и центр переносчика, занятый глюкозой, оказывается открытым внутрь клетки. Вследствие конформационных изменений переносчик теряет сродство к глюкозе, и молекула высвобождается в цитозоль клетки. Отделение глюкозы от переносчика вызывает конформационные изменения белка, и он возвращается к исходной "информации.

Некоторые транслоказы могут переносить два разных вещества по градиенту концентраций в одном направлении - пассивный симпорт , или в противоположных направлениях -пассивный антипорт .

Примером транслоказы, работающей по механизму пассивного антипорта, может служить анионный переносчик мембраны эритроцитов. Внутренняя митохондриальная мембрана содержит много транслоказ, осуществляющих пассивный антипорт. В процессе такого переноса происходит эквивалентный обмен ионами, но не всегда эквивалентный обмен по заряду.

Первично-активный транспорт

Перенос некоторых неорганических ионов идёт против градиента концентрации при участии транспортных АТФ-аз (ионных насосов). Все ионные насосы одновременно служат ферментами, способными к аутофосфорилированию и аутодефосфорилированию. АТФ-азы различаются по ионной специфичности, количеству переносимых ионов, направлению транспорта. В результате функционирования АТФ-азы переносимые ионы накапливаются с одной стороны мембраны. Наиболее распространены в плазматической мембране клеток человека Ма+,К+-АТФ-аза, Са2+-АТФ-аза и Н+,К+,-АТФ-аза слизистой оболочки желудка.

Na+, К+-АТФ-аза

Этот фермент-переносчик катализирует АТФ-зависимый транспорт ионов Na+ и K+ через плазматическую мембрану. Ка+,К+-АТФ-аза состоит из субъединиц α и β; α - каталитическая большая субъединица, a β - малая субъединица (гликопротеин). Активная форма транслоказы - тетрамер (αβ)2.

Na+,К+-АТФ-аза отвечает за поддержание высокой концентрации К+ в клетке и низкой концентрации Na+. Так как Na+Д+-АТФ-аза выкачивает три положительно заряженных иона, а закачивает два, то на мембране возникает электрический потенциал с отрицательным значением на внутренней части клетки по отношению к её наружной поверхности.

Са2+-АТФ-аза локализована не только в плазматической мембране, но и в мембране ЭР. Фермент состоит из десяти трансмембранных доменов, пронизывающих клеточную мембрану. Между вторым и третьим доменами находятся несколько остатков аспарагиновой кислоты, участвующих в связывании кальция. Область между четвёртым и пятым доменами имеет центр для присоединения АТФ и аутофосфорилирования по остатку аспарагиновой кислоты. Са2+-АТФ-азы плазматических мембран некоторых клеток регулируются белком кальмодулином. Каждая из Са2+-АТФ-аз плазматической мембраны и ЭР представлена несколькими изоформами.

Вторично-активный транспорт

Перенос некоторых растворимых веществ против градиента концентрации зависит от одновременного или последовательного переноса другого вещества по градиенту концентрации в том же направлении (активный симпорт) или в противоположном (активный антипорт). В клетках человека ионом, перенос которого происходит по градиенту концентрации, чаще всего служит Na+.

Последовательность событий в процессе работы Са2*-АТФ-азы.

1 - связывание двух ионов кальция участком АТФ-азы, обращённой в цитозоль;

2 - изменение заряда и конформации фермента (АТФ-азы), вызванное присоединением двух ионов Са2+, приводит к повышению сродства к АТФ и активации аутофосфорилирования;

3 - аутофосфорилирование сопровождается информационными изменениями, АТФ-аза закрывается с внутренней стороны мембраны и открывается с наружной;

4 - происходит снижение сродства центров связывания к ионам кальция и они отделяются от АТФ-азы;

5 - аутодефосфорилирование активируется ионами магния, в результате Са2+-АТФ-аза теряет фосфорный остаток и два иона Мg2+;

6 - АТФ-аза возвращается в исходное состояние.

Примером такого типа транспорта может служить Na+,Са2+-обменник плазматической мембраны (активный антипорт), ионы натрия по градиенту концентрации переносятся в клетку, а ионы Са2+ против градиента концентрации выходят из клетки.

По механизму активного симпорта происходят всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы, аминокислот клетками почек.

Перенос через мембрану макромолекул и частиц: эндоцитоз и экзоцитоз

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоцитозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

УЧАСТИЕ МЕМБРАН В МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЯХ

В плазматической мембране эукариотических клеток содержится множество специализированных рецепторов, которые, взаимодействуя с лигандами, вызывают специфические клеточные ответы. Одни рецепторы связывают сигнальные молекулы - гормоны, нейромедиаторы, другие - питательные вещества и метаболиты, третьи - участвуют в клеточной адгезии. Этот класс включает рецепторы, необходимые для узнавания клетками друг друга и для их адгезии, а также рецепторы, ответственные за связывание клеток с белками внеклеточного матрикса, такими как фибронектин или коллаген.

Способность клеток к специфическому взаимному узнаванию и адгезии важна для эмбрионального развития. У взрослого человека адгезивные взаимодействия "клетка-клетка" и "клетка-матрикс" продолжают оставаться существенными для поддержания стабильности тканей. В многочисленном семействе рецепторов клеточной адгезии наиболее изучены интегрины, селектины и кадгерины.

Интегрины - обширное суперсемейство гомологичных рецепторов клеточной поверхности для молекул межклеточного матрикса, таких как коллаген, фибронектин, ламинин и др. Являясь трансмембранными белками, они взаимодействуют как с внеклеточными молекулами, так и с внутриклеточными белками цитоскелета. Благодаря этому интегрины участвуют в передаче информации из внеклеточной среды в клетку, определяя таким образом направление её дифференцировки, форму, митотическую активность, способность к миграции. Передача информации может идти и в обратном направлении - от внутриклеточных белков через рецептор во внеклеточный матрикс.

Примеры некоторых интегринов:

    рецепторы для белков внеклеточного мат-рикса. Они связываются с гликопротеиновыми компонентами внеклеточного матрик-са, в частности с фибронектином, ламинином и витронектином (см. раздел 15);

    интегрины тромбоцитов (IIb и IIIa) участвуют в агрегации тромбоцитов, происходящей при свёртывании крови;

    лейкоцитарные белки адгезии. Для того чтобы мигрировать к месту инфекции и воспаления, лейкоциты должны вступить во взаимодействие с эндотелиальными клетками сосудов. Это взаимодействие может опосредовать связывание Т-лимфоцитов с фибробластами при воспалении.

Кадгерины и селектины - семейства трансмембранных Са 2+ -зависимых гликопротеинов, участвующих в межклеточной адгезии. Три возможных способа участия рецепторов этого типа в межклеточной адгезии.

Рецептор фибронектина. Рецептор фибронектина принадлежит к семейству интегринов. Каждая субъединица имеет единственный трансмембранный домен, короткий цитоплазматический и протяжённый N-внеклеточный домены. Обе субъединицы (α, β) интегрина гликозилированы и удерживаются вместе нековалентными связями, α-Субъединица синтезируется в виде одной полипептидной цепи, затем расщепляемой на малую трансмембранную цепь и большую внеклеточную цепь, соединённые дисульфидными мостиками. β-Субъединица содержит 4 повтора из 40 аминокислотных остатков каждый. α-Субъединицы богаты цистеином и содержат множество внутрицепочечных дисульфидных связей (на рисунке не показаны). Связываясь с фибронектином снаружи и с цитоскелетом внутри клетки, интегрин действует как трансмембранный линкер.

Способы взаимодействия между молекулами клеточной поверхности в процессе межклеточной адгезии. А - рецепторы одной клетки могут связываться с такими же рецепторами соседних клеток (гомофильное связывание); Б - рецепторы одной клетки могут связываться с рецепторами другого типа соседних клеток (гетерофильное связывание); В - рецепторы клеточной поверхности соседних клеток могут связываться друг с другом с помощью поливалентных линкерных молекул.

Кадгерины разных тканей очень схожи, гомологичные аминокислотные последовательности составляют 50-60%. Каждый рецептор имеет один трансмембранный домен.

Наиболее полно охарактеризованы 3 группы кадгериновых рецепторов:

    Е-кадгерин находится на поверхности многих клеток эпителиальных и эмбриональных тканей;

    N-кадгерин локализован на поверхности нервных клеток, клеток сердца и хрусталика;

    Р-кадгерин расположен на клетках плаценты и эпидермиса.

Кадгерины играют важную роль при начальной межклеточной адгезии, на стадиях морфо-и органогенеза, обеспечивают структурную целостность и полярность тканей, особенно эпителиального монослоя.

В семействе селектиновых рецепторов наиболее хорошо изучены три белка: L-селектин, Р-селектин и Е-селектин. Внеклеточная часть селектинов состоит из 3 доменов: первый домен представлен 2-9 блоками повторяющихся аминокислотных остатков (комплементрегуля-торный белок), второй - домен эпидермального фактора роста (ЭФР), третий - N-концевой лектиновый домен. Селектины L, Р, Е различаются количеством блоков в ком-плементрегуляторном белке. Лектины - семейство белков, специфически взаимодействующих с определёнными последовательностями углеводных остатков в составе гликопротеинов, протеогликанов и гликолипидов внеклеточного матрикса.

Клеточная мембрана - это плоскостная структура, из которой построена клетка. Она присутствует у всех организмов. Её уникальные свойства обеспечивают жизнедеятельность клеток.

Виды мембран

Можно выделить три вида клеточных мембран:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана создаёт границы клетки. Её не надо путать с клеточной стенкой или оболочкой, имеющейся у растений, грибов и бактерий.

Отличие клеточной стенки от клеточной мембраны в значительно большей толщине и преобладании защитной функции над обменной. Мембрана располагается под клеточной стенкой.

Ядерная мембрана отделяет от цитоплазмы содержимое ядра.

ТОП-4 статьи которые читают вместе с этой

Среди органоидов клетки есть такие, форма которых образована одной или двумя мембранами:

  • митохондрии;
  • пластиды;
  • вакуоли;
  • комплекс Гольджи;
  • лизосомы;
  • эндоплазматическая сеть (ЭПС).

Строение мембраны

По современным представлениям структура клеточной мембраны описывается с помощью жидкостномозаичной модели. Основу мембраны составляет билипидный слой - два уровня молекул липидов, образующих плоскость. С обеих сторон на билипидном слое расположены молекулы белков. Некоторые белки погружены в билипидный слой, некоторые проходят через него.

Рис. 1. Клеточная мембрана.

Животные клетки на поверхности мембраны имеют комплекс углеводов. При изучении клетки под микроскопом отмечено, что мембрана находится в постоянном движении и неоднородна по строению.

Мембрана является мозаикой и в морфологическом, и в функциональном смысле, т. к. её различные участки содержат различные вещества и имеют разные физиологические свойства.

Свойства и функции

Любая пограничная структура осуществляет защитные и обменные функции. Это касается и всех видов мембран.

Осуществлению данных функций способствуют такие свойства, как:

  • пластичность;
  • высокая способность к восстановлению;
  • полупроницаемость.

Свойство полупроницаемости заключается в том, что одни вещества не пропускаются мембраной, а другие пропускаются свободно. Так осуществляется контролирующая функция мембраны.

Также наружная мембрана обеспечивает связь между клетками за счёт многочисленных выростов и выделения клеящего вещества, заполняющего межклеточное пространство.

Транспорт веществ через мембрану

Поступление веществ через наружную мембрану идёт следующими путями:

  • через поры с помощью ферментов;
  • через мембрану непосредственно;
  • пиноцитозом;
  • фагоцитозом.

Первыми двумя способами транспортируются ионы и мелкие молекулы. Крупные молекулы поступают в клетку путём пиноцитоза (в жидком состоянии) и фагоцитоза (в твёрдом виде).

Рис. 2. Схема пино- и фагоцитоза.

Мембрана обхватывает пищевую частицу и замыкает её в пищеварительную вакуоль.

Вода и ионы проходят в клетку без затрат энергии, пассивным транспортом. Крупные молекулы перемещаются активным транспортом, с затратой энергетических ресурсов.

Внутриклеточный транспорт

От 30 % до 50 % объёма клетки занимает эндоплазматическая сеть. Это своеобразная система полостей и каналов, связывающая все части клетки и обеспечивающая упорядоченную внутриклеточную транспортировку веществ.

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 190.

Мембрана - это сверхтонкая структура, образующая поверхности органоидов и клетки в целом. Все мембраны имеют сходное строение и связаны в одну систему.

Химический состав

Мембраны клетки химически однородны и состоят из белков и липидов различных групп:

  • фосфолипидов;
  • галактолипидов;
  • сульфолипидов.

Также в их состав входят нуклеиновые кислоты, полисахариды и другие вещества.

Физические свойства

При нормальной температуре мембраны находятся в жидкокристаллическом состоянии и постоянно колеблется. Их вязкость близка к вязкости растительного масла.

Мембрана способна к восстановлению, прочна, эластична и имеет поры. Толщина мембран 7 - 14 нм.

ТОП-4 статьи которые читают вместе с этой

Для крупных молекул мембрана непроницаема. Мелкие молекулы и ионы могут проходить через поры и саму мембрану под действием разности концентраций по разные стороны мембраны, а также при помощи транспортных белков.

Модель

Обычно строение мембран описывается при помощи жидкостно-мозаичной модели. Мембрана имеет каркас - два ряда липидных молекул, плотно, как кирпичики прилегающих друг к другу.

Рис. 1. Биологическая мембрана типа сэндвича.

С обеих сторон поверхность липидов покрыта белками. Мозаичная картина образуется неравномерно распределёнными на поверхности мембраны молекулами белков.

По степени погруженности в билипидный слой белковые молекулы делят на три группы:

  • трансмембранные;
  • погружённые;
  • поверхностные.

Белки обеспечивают основное свойство мембраны - её избирательную проницаемость для различных веществ.

Типы мембран

Все мембраны клетки по локализации можно разделить на следующие типы:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана, или плазмолемма, является границей клетки. Соединяясь с элементами цитоскелета, она поддерживает её форму и размеры.

Рис. 2. Цитоскелет.

Ядерная мембрана, или кариолемма, является границей ядерного содержимого. Она построена из двух мембран, очень похожих на наружную. Внешняя мембрана ядра связана с мембранами эндоплазматической сети (ЭПС) и, через поры, с внутренней мембраной.

Мембраны ЭПС пронизывают всю цитоплазму, образуя поверхности, на которых идёт синтез различных веществ, в том числе мембранных белков.

Мембраны органоидов

Мембранное строение имеет большинство органоидов.

Из одной мембраны построены стенки:

  • комплекса Гольджи;
  • вакуолей;
  • лизосом.

Пластиды и митохондрии построены из двух слоёв мембран. Их наружная мембрана гладкая, а внутренняя образует множество складок.

Особенностями фотосинтетических мембран хлоропластов являются встроенные молекулы хлорофилла.

Животные клетки имеют на поверхности наружной мембраны углеводный слой, называемый гликокаликсом.

Рис. 3. Гликокаликс.

Наиболее развит гликокаликс в клетках кишечного эпителия, где он создаёт условия для пищеварения и защищает плазмолемму.

Таблица «Строение клеточной мембраны»

Что мы узнали?

Мы рассмотрели строение и функции клеточной мембраны. Мембрана является селективным (избирательным) барьером клетки, ядра и органоидов. Строение клеточной мембраны описывается жидкостно-мозаичной моделью. Согласно этой модели, в двойной слой липидов вязкой консистенции встроены белковые молекулы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 270.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.


Рассказать друзьям