Решение неравенств. Доступно о том, как решать неравенства

💖 Нравится? Поделись с друзьями ссылкой

Системе неравенств.
Пример 1 . Найти область определения выражения
Решение. Под знаком квадратного корня должно находиться неотрицательное число, значит, должны одновременно выполняться два неравенства: В таких случаях говорят, что задача сводится к решению системы неравенств

Но с такой математической моделью (системой неравенств) мы еще не встречались. Значит, решение примера мы пока не в состоянии довести до конца.

Неравенства, образующие систему, объединяются фигурной скобкой (так же обстоит дело и в системах уравнений). Например, запись

означает, что неравенства 2х - 1 > 3 и Зх - 2 < 11 образуют систему неравенств.

Иногда используется запись системы неравенств в виде двойного неравенства. Например, систему неравенств

можно записать в виде двойного неравенства 3<2х-1<11.

В курсе алгебры 9-го класса мы будем рассматривать только системы из двух неравенств.

Рассмотрим систему неравенств

Можно подобрать несколько ее частных решений, например х = 3, х = 4, х = 3,5. В самом деле, при х = 3 первое неравенство принимает вид 5 > 3, а второе - вид 7 < 11. Получились два верных числовых неравенства, значит, х = 3 - решение системы неравенств. Точно так же можно убедиться в том, что х = 4, х = 3,5 - решения системы неравенств.

В то же время значение х = 5 не является решением системы неравенств. При х = 5 первое неравенство принимает вид 9 > 3 - верное числовое неравенство, а второе - вид 13 < 11- неверное числовое неравенство .
Решить систему неравенств - значит найти все ее частные решения. Ясно, что такое угадывание, которое продемонстрировано выше, - не метод решения системы неравенств. В следующем примере мы покажем, как обычно рассуждают при решении системы неравенств.

Пример 3. Решить систему неравенств:

Р е ш е н и е.

а) Решая первое неравенство системы, находим 2х > 4, х > 2; решая второе неравенство системы, находим Зх < 13 Отметим эти промежутки на одной координатной прямой , использовав для выделения первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 22). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем интервал
б) Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 23). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем луч


в) Решая первое неравенство системы, находим х < 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 24). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Здесь такого промежутка нет, значит, система неравенств не имеет решений.



Обобщим рассуждения, проведенные в рассмотренном примере. Предположим, что нам нужно решить систему неравенств


Пусть, например, интервал (а, b) является решением неравенства fх 2 > g(х), а интервал (с, d) - решением неравенства f 2 (х) > s 2 (х). Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 25). Решением системы неравенств является пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. На рис. 25 это интервал (с, b).


Теперь мы без особого труда сможем решить систему неравенств, которую получили выше, в примере 1:

Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим х < 8. Отметим эти промежутки (лучи) на одной координатной прямой, использовав для первого -верхнюю, а для второго - нижнюю штриховку (рис. 26). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали, - отрезок . Это - область определения того выражения, о котором шла речь в примере 1.


Разумеется, система неравенств не обязательно должна состоять из линейных неравенств, как было до сих пор; могут встретиться любые рациональные (и не только рациональные) неравенства. Технически работа с системой рациональных нелинейных неравенств, конечно, сложнее, но принципиально нового (по сравнению с системами линейных неравенств) здесь ничего нет.

Пример 4. Решить систему неравенств

Р е ш е н и е.

1) Решим неравенство Имеем
Отметим точки -3 и 3 на числовой прямой (рис. 27). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение р(х) = (х- 3)(х + 3) сохраняет постоянный знак - эти знаки указаны на рис. 27. Нас интересуют промежутки, на которых выполняется неравенство р(х) > 0 (они заштрихованы на рис. 27), и точки, в которых выполняется равенство р(х) = 0, т.е. точки х = -3, х = 3 (они отмечены на рис. 2 7 темными кружочками). Таким образом, на рис. 27 представлена геометрическая модель решения первого неравенства.


2) Решим неравенство Имеем
Отметим точки 0 и 5 на числовой прямой (рис. 28). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение <7(х) = х(5 - х) сохраняет постоянный знак - эти знаки указаны на рис. 28. Нас интересуют промежутки, на которых выполняется неравенство g(х) > О (заштриховано на рис. 28), и точки, в которых выполняется равенство g (х) - О, т.е. точки х = 0, х = 5 (они отмечены на рис. 28 темными кружочками). Таким образом, на рис. 28 представлена геометрическая модель решения второго неравенства системы.


3) Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для решений первого неравенства верхнюю штриховку, а для решений второго - нижнюю штриховку (рис. 29). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок .


Пример 5. Решить систему неравенств:


Решение:

а) Из первого неравенства находим x >2. Рассмотрим второе неравенство. Квадратный трехчлен х 2 + х + 2 не имеет действительных корней, а его старший коэффициент (коэффициент при х 2) положителен. Значит, при всех х выполняется неравенство х 2 + х + 2>0,а потому второе неравенство системы не имеет решений. Что это значит для системы неравенств? Это значит, что система не имеет решений.

б) Из первого неравенства находим x > 2, а второе неравенство выполняется при любых значениях х. Что это значит для системы неравенств? Это значит, что ее решение имеет вид х>2, т.е. совпадает с решением первого неравенства.

О т в е т:

а) нет решений; б) x >2.

Этот пример является иллюстрацией для следующих полезных

1. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений.

2. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной , то решением системы служит решение второго неравенства системы.

Завершая этот параграф, вернемся к приведенной в его начале задаче о задуманном числе и решим ее, как говорится, по всем правилам.

Пример 2 (см. с. 29). Задумано натуральное число. Известно, что если к квадрату задуманного числа прибавить 13, то сумма будет больше произведения задуманного числа и числа 14. Если же к квадрату задуманного числа прибавить 45, то сумма будет меньше произведения задуманного числа и числа 18. Какое число задумано?

Решение.

Первый этап. Составление математической модели.
Задуманное число х, как мы видели выше, должно удовлетворять системе неравенств


Второй этап. Работа с составленной математической моделью.Преобразуем первое неравенство системы к виду
х2- 14x+ 13 > 0.

Найдем корни трехчлена х 2 - 14x + 13: х 2 = 1, х 2 = 13. С помощью параболы у = х 2 - 14x + 13 (рис. 30) делаем вывод, что интересующее нас неравенство выполняется при x < 1 или x > 13.

Преобразуем второе неравенство системы к виду х2 - 18 2 + 45 < 0. Найдем корни трехчлена х 2 - 18x + 45: = 3, х 2 = 15.

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 23 Системы линейных неравенств

Системой линейных неравенств называется любая совокупность двух или более линейных неравенств, содержащих одну и ту же неизвестную величину.

Примерами таких систем могут служить системы:

Решить систему неравенств - это значит найти все значения неизвестной величины, при которых выполняется каждое неравенство системы.

Решим приведенные выше системы.

Расположим одну под другой две числовые прямые (рис. 31); на верхней отметим те значения х , при которых выполняется первое неравенство (х > 1), а на нижней-те значения х , при которых выполняется второе неравенство (х > 4).

Сравнивая результаты на числовых прямых, замечаем, что оба неравенства одновременно будут удовлетворяться при х > 4. Ответ, х > 4.

Первое неравенство дает -3х < -б, или х > 2, а второе - х > -8, или х < 8. Далее поступаем так же, как и в первом примере. На одной числовой прямой отмечаем все те значения х , при которых выполняется первое неравенство системы, а на второй числовой прямой, расположенной под первой, все те значения х , при которых выполняется второе неравенство системы (рис. 32).

Сравнение этих двух результатов показывает, что оба неравенства одновременно будут выполняться при всех значениях х , заключенных от 2 до 8. Множество таких значений х записывается в виде двойного неравенства 2 < х < 8.

Пример 3. Решить систему неравенств

Первое неравенство системы дает 5х < 10, или х < 2, второе х > 4. Таким образом, любое число, удовлетворяющее обоим неравенствам одновременно, должно быть не больше 2 и больше 4 (рис. 33).

Но таких чисел не существует. Поэтому данная система неравенств не выполняется ни при каких значениях х . Подобные системы неравенств называются несовместными.

Упражнения

Решить данные системы неравенств (№ 179 -184):

Решить неравенства (№ 185, 186):

185. (2х + 3) (2 - 2х ) > 0. 186. (2 - π ) (2х - 15) (х + 4) > 0.

Найти допустимые значения букв, входящих в данные равенства (№ 187, 188):

Решить неравенства (№ 189, 190):

189. 1 < 2х - 5 < 2. 190. -2 < 1 - ах < 5.

191. Какой должна быть температура 10 л воды, чтобы при смешении ее с 6 л воды при температуре 15° получить воду с температурой не менее 30° и не более 40°?

192. Одна сторона треугольника равна 4 см, а сумма двух других 10 см. Найти эти стороны, если они выражаются целыми числами.

193. Известно, что система двух линейных неравенств не удовлетворяется ни при каких значениях неизвестной величины. Можно ли сказать, что отдельные неравенства этой системы невыполняются ни при каких значениях неизвестной величины?

Существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.

Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.

Линейные неравенства

Различают два типа линейных неравенств:

1) Строгие неравенства: .

2) Нестрогие неравенства: .

Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость .

Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.

Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:


Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю

Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».

В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .

Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .

С осью ординат та же самая прозаичная история:

– неравенство задаёт правую полуплоскость;
– неравенство задаёт правую полуплоскость, включая ось ординат;
– неравенство задаёт левую полуплоскость;
– неравенство задаёт левую полуплоскость, включая ось ординат.

На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.

Отсутствует «игрек»:

Или отсутствует «икс»:

С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода . Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции .

Пример 1

Решить линейные неравенства:

Что значит решить линейное неравенство?

Решить линейное неравенство – это значит найти полуплоскость , точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение , как правило, графическое .

Удобнее сразу выполнить чертёж, а потом всё закомментировать:

а) Решим неравенство

Способ первый

Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».

Правило : В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).

Переносим «пятёрку» в правую часть со сменой знака:

Правило ПОЛОЖИТЕЛЬНОЕ не меняется .

Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое , и точки, принадлежащие данной прямой, заведомо не будут входить в решение.

Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.

Способ второй

Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!

Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .

Теперь выбираем любую точку плоскости, не принадлежащую прямой . В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :

Получено неверное неравенство (простыми словами, так быть не может), значит, точка не удовлетворяет неравенству .

Ключевое правило нашей задачи :
не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству.
– Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.

Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .

Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).

б) Решим неравенство

Способ первый

Преобразуем неравенство:

Правило : Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).

Умножаем обе части неравенства на :

Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое , и прямая заведомо принадлежит решению.

Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).

Подходящую полуплоскость штрихуем либо помечаем стрелочками.

Способ второй

Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :

Получено верное неравенство , значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.

Здесь подопытной точкой мы «попали» в нужную полуплоскость.

Решение задачи обозначено красной прямой и красными стрелочками.

Лично мне больше нравится первый способ решения, поскольку второй таки более формален.

Пример 2

Решить линейные неравенства:

Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.

Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.

Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:

Как вариант, свободный член «цэ» может быть нулевым.

Пример 3

Найти полуплоскости, соответствующие следующим неравенствам:

Решение : Здесь используется универсальный метод решения с подстановкой точки.

а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.

Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:

Получено неверное неравенство , значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:

б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.

Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:

Получено верное неравенство , значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .

Пример 4

Найти полуплоскости, соответствующие неравенствам:

Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.

Разберём обратную задачу:

Пример 5

а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.

б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.

Решение : здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:

а) Составим вспомогательный многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:

б) Составим многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .

Ответ :

Творческий пример для самостоятельного изучения:

Пример 6

Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.

Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.

Системы линейных неравенств

Система линейных неравенств – это, как вы понимаете, система, составленная из нескольких неравенств. Лол, ну и определение выдал =) Ёжик – это ёжик, ножик – это ножик. А ведь правда – получилось просто и доступно! Нет, если серьёзно, не хочется приводить каких-то примеров в общем виде, поэтому сразу перейдём к насущным вопросам:

Что значит решить систему линейных неравенств?

Решить систему линейных неравенств – это значит найти множество точек плоскости , которые удовлетворяют каждому неравенству системы.

В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):

Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.

Аналогично:
– система неравенств задаёт вторую координатную четверть (левая верхняя);
– система неравенств задаёт третью координатную четверть (левая нижняя);
– система неравенств задаёт четвёртую координатную четверть (правая нижняя).

Система линейных неравенств может не иметь решений , то есть, быть несовместной . Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.

Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .

Но самый распространённый случай, когда решением системы является некоторая область плоскости . Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной . Ограниченная область решений называется многоугольником решений системы .

Пример 7

Решить систему линейных неравенств

На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.

Решение : то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:

1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)

2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.

3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.

Встаньте, дети, встаньте в круг:


Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.

Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).

Ответ : решением системы является многоугольник .

При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций ), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.

Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.

Пример 8

Решить систему

Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.

Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:

Пример 9

Решить систему и найти координаты вершин полученной области

Решение : изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:

Графический метод.. 3

Симплекс-метод.. 6

Метод искусственного базиса.. 8

Принцип двойственности.. 10

Список использованной литературы... 12

Вступление

Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.

Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.

В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.

Графический метод

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

    На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:
и графики и область допустимых решении находятся в первой четверти.

Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).


Как видно из иллюстрации многогранник ABCDEобразует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.

    Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что

f(C)=f(4;1)=19 – максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа aот -∞ до +∞ прямые f=aсмещаются по вектору нормали . Если при таком перемещении линии уровня существует некоторая точка X– первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум fна множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=aпересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то


В нашем примере прямая f=aпересевает область ABCDEв точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

Симплекс-метод

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

    Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:

Б. X1 X2 X3 X4 X5 C
X3 0 -1 1 1 0 1
X4 0 1 -1 0 1 1
X5 1 1 1 0 0 2
f 0 -6 7 0 0 3

В первом столбце данной таблицы обозначены базисные неизвестные, в последнем – значения свободных неизвестных, в остальных – коэффициенты при неизвестных.

    Для того чтобы найти максимум функции fнадо с помощью преобразований методом Гаусса сделать так, чтобы все коэффициенты при неизвестных в последней строке были неотрицательными (для нахождения минимума, сделать так, чтобы все коэффициенты были меньше или равны нулю).
Б X1 X2 X3 X4 X5 C
X3 -1 1 1 0 0 1
X4 1 -1 0 1 0 1
X5 1 1 0 0 1 2
f -6 7 0 0 0 3

Для этого выбираем столбец с отрицательным коэффициентом в последней строке (столбец 3) и составляем для положительных элементов данного столбца отношения свободный член/коэффициент (1/1; 2/1) . Из данных отношений выбираем наименьшее и помечаем соответствующую строку .

Нами выбран элемент в ячейке (3;3). Теперь с помощью метода Гаусса обнуляем другие коэффициенты в данном столбце, это приводит к смене базиса и мы на один шаг приближаемся к оптимальному решению.

Б X1 X2 X3 X4 X5 C
X3 0 0 1 1 0 2
X1 1 -1 0 1 0 1
X5 0 2 0 -1 1 1
f 0 1 0 6 0 9

Как видно из таблицы теперь все коэффициенты в последней строке больше либо равны нулю. Это означает, что нами найдено оптимальное значение. Свободные неизвестные равны нулю, значению базисных неизвестных и максимуму функции f соответствует значения свободных неизвестных.



Рассказать друзьям