Типичные ошибки при решении задач по теории вероятностей. Действия над вероятностями

💖 Нравится? Поделись с друзьями ссылкой

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

    Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность событияВ равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность событияС :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событийВ и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

    Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События ,, … ,называютсянезависимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а событияА и В независимы, то
, т.е..

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность событияА после наступления события В будет уже другой, равной . Это означает, что вероятность событияА зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или.

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как, то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событииА может наступить только с одним из этих событий. Если известны вероятности и условные вероятностисобытияА , то вероятность события А вычисляется по формуле:

или
. Эта формула называетсяформулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность событияА . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событиеА уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность событияА : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    Формула Бернулли

Испытания называются независимыми , если при каждом из них событие А наступает с одной и той же вероятностью
, не зависящей от того, появилось или не появилось это событие в других испытаниях. Вероятность противоположного событияв этом случае равна
.

Пример 11 . Бросается игральный кубик n раз. Обозначим событие A ={выпадение трёх очков}. Вероятность наступления события А в каждом испытании равна и не зависит от того, произошло или не произошло это событие в других испытаниях. Поэтому эти испытания являются независимыми. Вероятность противоположного события
{не выпадение трёх очков} равна
.

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность наступления события А равна p , событие наступит ровно k раз (безразлично в какой последовательности), вычисляется по формуле
, где
. Эта формула называетсяформулой Бернулли и удобна она в том случае, если число испытаний n не слишком велико.

Пример 12 . Доля плодов, заражённых болезнью в скрытой форме, составляет 25%. Случайным образом отбирается 6 плодов. Найти вероятность того, что среди выбранных окажется: а) ровно 3 заражённых плода; б) не более двух заражённых плодов.

Решение . По условию примера .

а) По формуле Бернулли вероятность того, что среди шести отобранных плодов заражёнными окажутся ровно три, равна




0.132.

б) Обозначим событие A ={заражённых будет не более двух плодов}. Тогда . По формуле Бернулли:

0.297.

Следовательно,
0.178+0.356+0.297=0.831.

    Теоремы Лапласа и Пуассона

По формуле Бернулли находится вероятность того, что событие А наступит k раз в n независимых испытаниях и в каждом испытании вероятность события А постоянна. При больших значениях n вычисления по формуле Бернулли становятся трудоёмкими. В этом случае для вычисления вероятности события А целесообразнее использовать другую формулу.

Локальная теорема Лапласа . Пусть вероятность p наступления события А в каждом испытании постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие А наступит ровно k раз при достаточно большом числе n испытаний, вычисляется по формуле

, где
, а значения функции
приведены в таблице.

Основными свойствами функции
являются:

Функция
определена и непрерывна в интервале
.

Функция
положительна, т.е.
>0.

Функция
чётная, т.е.
.

Так как функция
чётная, то в таблице приведены её значения только для положительных значенийх .

Пример 13 . Всхожесть семян пшеницы составляет 80%. Для опыта отбирается 100 семян. Найти вероятность того, что из отобранных семян взойдут ровно 90.

Решение . По условию примера n =100, k =90, p =0.8, q =1-0.8=0.2. Тогда
. По таблице найдём значение функции
:
. Вероятность того, что из отобранных семян взойдут ровно 90, равна
0.0044.

При решении практических задач возникает необходимость найти вероятность наступления события А при n независимых испытаниях не менее раз и не болеераз. Такая задача решается с помощьюинтегральной теоремы Лапласа : Пусть вероятность p наступления события А в каждом из n независимых испытаний постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие наступит не менее раз и не болеераз при достаточно большом числе испытаний, вычисляется по формуле

Где
,
.

Функция
называетсяфункцией Лапласа и не выражается через элементарные функции. Значения этой функции приведены в специальных таблицах.

Основными свойствами функции
являются:


.

Функция
возрастает в интервале
.


при
.

Функция
нечётная, т.е.
.

Пример 14 . Предприятие выпускает продукцию, из которой 13% не высшего качества. Определить вероятность того, что в непроверенной партии из 150 единиц продукции высшего качества будет не менее 125 и не более 135.

Решение . Обозначим . Вычислим
,

Вероятностью события А называют отношение числа m исходов испытаний, благоприятствующих наступлению события А, к общему числу n всех равновозможных несовместных исходов: Р(А)=m/n.

Условной вероятностью события А (или вероятностью события А при условии, что наступило событие В), называется число Р В (А) = Р(АВ)/Р(В), где А и В – два случайных события одного и того же испытания.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них. Сумма двух событий обозначается А+В.

Правила сложения вероятностей :

  • совместных событий А и В:
    Р(А+В) = Р(А)+Р(В)-Р(АВ), где Р(А) – вероятность события А, Р(В) – вероятность события В, Р(А+В) – вероятность появления хотя бы одного из двух событий, Р(АВ)- вероятность совместного появления двух событий.
  • правило сложения вероятностей несовместных событий А и В:
    Р(А+В) = Р(А)+Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Произведением конечного числа событий называется событие, состоящее в том, что каждое из них произойдет. Произведение двух событий обозначается АВ.

Правила умножения вероятностей :

  • зависимых событий А и В:
    Р(АВ)= Р(А)*Р А (В)= Р(В)*Р В (А), где Р А (В) – условная вероятность наступления события В, если событие А уже наступило, Р В (А) – условная вероятность наступления события А, если событие В уже наступило;
  • правило умножения вероятностей независимых событий А и В:
    Р(АВ) = Р(А)*Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Примеры решения задач по теме «Операции над событиями. Правила сложения и умножения вероятностей»

Задача 1 . В коробке имеется 250 лампочек, из них 100 по 90Вт, 50 - по 60Вт, 50 - по 25Вт и 50 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

Решение.

А = {мощность лампочки равна 90Вт}, вероятность Р(А)=100/250=0,4;
В = {мощность лампочки равна 60Вт};
С = {мощность лампочки равна 25Вт};
D = {мощность лампочки равна 15Вт}.

2. События А, В, С, D образуют полную систему , так как все они несовместны и одно из них обязательно наступит в данном опыте (выборе лампочки). Вероятность наступления одного из них есть достоверное событие, тогда Р(А)+Р(В)+Р(С)+Р(D)=1.

3. События {мощность лампочки не более 60Вт} (т.е. меньше или равна 60Вт), и {мощность лампочки более 60Вт} (в данном случае – 90Вт) являются противоположными. По свойству противоположных чисел Р(В)+Р(С)+Р(D)=1-Р(А).

4. Учитывая, что Р(В)+Р(С)+Р(D)=Р(В+С+D), получим Р(В+С+D)= 1-Р(А)=1-0,4=0,6.

Задача 2 . Вероятность поражения цели первым стрелком при одном выстреле равна 0,7, а вторым стрелком – 0,9. Найти вероятность того, что
а) цель будет поражена только одним стрелком;
б) цель будет поражена хотя бы одним стрелком.

Решение.
1. Рассматриваем следующие события:
А1 = {первый стрелок поражает цель}, Р(А1)=0,7 из условия задачи;
А̄1 = {первый стрелок промахнулся}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {второй стрелок поражает цель}, Р(А2)=0,9 из условия задачи;
А̄2 = {второй стрелок промахнулся}, при этом Р(А̄2)=1-0,9=0,1.

2. Событие А={цель поражена только одним стрелком} означает, что наступило одно из двух несовместных событий: либо А1А̄2, либо А̄1А2.
По правилу сложения вероятностей Р(А)= Р(А1А̄2)+Р(А̄1А2).


Р(А1А̄2)= Р(А1)*Р(А̄2)= 0,7*0,1=0,07;
Р(А̄1А2)= Р(А̄1)*Р(А2)=0,3*0,9=0,27.
Тогда Р(А)= Р(А1А̄2)+Р(А̄1А2)=0,07+0,27=0,34.

3. Событие B={цель поражена хотя бы одним стрелком} означает, что либо цель поразил первый стрелок, либо цель поразил второй стрелок, либо цель поразили оба стрелка.

Событие B̄={цель не поражена ни одним стрелком} является противоположным событию В, а значит Р(В)=1-Р(B̄).
Событие B̄ означает одновременное появление независимых событий Ā1 и Ā2, следовательно Р(B̄)=Р(Ā1Ā2)= Р(Ā1)*Р(Ā2)=0,3*0,1=0,3.
Тогда Р(В)= 1-Р(B̄)=1-0,3=0,7.

Задача 3 . Экзаменационный билет состоит из трех вопросов. Вероятность того, что студент ответит на первый вопрос 0,7; на второй – 0,9; на третий – 0,6. Найти вероятность того, что студент, выбрав билет ответит:
а) на все вопросы;
г) по крайней мере на два вопроса.

Решение. 1. Рассматриваем следующие события:
А1 = {студент ответил на первый вопрос}, Р(А1)=0,7 из условия задачи;
А̄1 = {студент не ответил на первый вопрос}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {студент ответил на второй вопрос}, Р(А2)=0,9 из условия задачи;
А̄2 = {студент не ответил на второй вопрос}, при этом Р(А̄2)=1-0,9=0,1;
А3 = {студент ответил на третий вопрос}, Р(А3)=0,6 из условия задачи;
А̄3 = {студент не ответил на третий вопрос}, при этом Р(А̄3)=1-0,6=0,4.

2. Событие А = {студент ответил на все вопросы} означает одновременное появление независимых событий А1, А2 и А3, т.е. Р(А)= Р(А1А2А3).По правилу умножения вероятностей независимых событий: Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(А)= Р(А1А2А3)=0,378.

3. Событие D = {студент ответил по крайней мере на два вопроса} означает, что дан ответ на любые два вопроса или на все три, т.е. наступило одно из четырех несовместных событий: либо A1A2Ā3, либо А1Ā2А3, либо А̄1А2А3, либо А1А2А3.
По правилу сложения вероятностей несовместных событий: Р(D)= Р(A1A2Ā3)+ Р(А1Ā2А3)+Р(А̄1А2А3)+Р(А1А2А3).

По правилу умножения вероятностей независимых событий:
Р(A1A2Ā3)= Р(A1)*Р(A2)*Р(Ā3)= 0,7*0,9*0,4=0,252;
Р(А1Ā2А3)= Р(А1)*Р(Ā2)*Р(А3)= 0,7*0,1*0,6=0,042;
Р(А̄1А2А3)= Р(А̄1)*Р(А2)*Р(А3)= 0,3*0,9*0,6=0,162;
Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(D)= 0,252+0,042+0,162+0,378= 0,834.

Теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей двух событий . Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления :

Р(А+В)=Р(А)+Р(В)-Р(АВ).

Теорема сложения вероятностей двух несовместных событий . Вероятность суммы двух несовместных событий равна сумме вероятностей этих :

Р(А+В)=Р(А)+Р(В).

Пример 2.16. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую - 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение.

События А - «стрелок попал в первую область» и В - «стрелок попал во вторую область» - несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность равна:

Р(А+В)=Р(А)+Р(В)= 0,45+ 0,35 = 0,8.

Теорема сложения вероятностей п несовместных событий . Вероятность суммы п несовместных событий равна сумме вероятностей этих :

Р(А 1 +А 2 +…+А п)=Р(А 1)+Р(А 2)+…+Р(А п).

Сумма вероятностей противоположных событий равна единице:

Вероятность события В при условии, что произошло событие А , называется условной вероятностью события В и обозначается так: Р(В/А), или Р А (В).

. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

Р(АВ)=Р(А)Р А (В).

Событие В не зависит от события А , если

Р А (В)=Р(В),

т.е. вероятность события В не зависит от того, произошло ли событие А .

Теорема умножения вероятностей двух независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Р(АВ)=Р(А)Р(В).

Пример 2.17. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А – «попадание первого орудия» и В – «попадание второго орудия» независимы.

Вероятность события АВ – «оба орудия дали попадание»:

Искомая вероятность

Р(А+В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Теорема умножения вероятностей п событий. Вероятность произведения п событий равна произведению одного из них на условные вероятности всех остальных, вычисленные в предположении, что все предыдущие события наступили:

Пример 2.18 . В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором – черный (событие В) и при третьем – синий (событие С).

Решение.

Вероятность появления белого шара в первом испытании:

Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность:

Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором - черный, т. е. условная вероятность:

Искомая вероятность равна:

Теорема умножения вероятностей п независимых событий. Вероятность произведения п независимых событий равна произведению их вероятностей:

Р(А 1 А 2 …А п)=Р(А 1)Р(А 2)…Р(А п).

Вероятность появления хотя бы одного из события. Вероятность появления хотя бы одного из событий А 1 , А 2 , …, А п, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

.

Пример 2.19. Вероятности попадания в цель при стрельбе из трех орудий таковы: р 1 = 0,8; р 2 = 0,7; р 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A 1 (попадание первого орудия), А 2 (попадание второго орудия) и А 3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А 1 , А 2 и А 3 (т.е. вероятности промахов), соответственно равны:

, , .

Искомая вероятность равна:

Если независимые события А 1 , А 2 , …, А п имеют одинаковую вероятность, равную р , то вероятность появления хотя бы одного из этих событий выражается формулой:

Р(А)= 1 – q n ,

где q=1- p

2.7. Формула полной вероятности. Формула Байеса.

Пусть событие А может произойти при условии появления одного из несовместных событий Н 1 , Н 2 , …, Н п , образующих полную группу событий. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами .

Вероятность появления события А вычисляется по формуле полной вероятности:

Р(А)=Р(Н 1)Р(А/Н 1)+ Р(Н 2)Р(А/Н 2)+…+ Р(Н п)Р(А/Н п).

Допусти, что произведен опыт, в результате которого событие А произошло. Условные вероятности событий Н 1 , Н 2 , …, Н п относительно события А определяются формулами Байеса :

,

Пример 2.20 . В группе из 20 студентов, пришедших на экзамен, 6 подготовлены отлично, 8 – хорошо, 4 – удовлетворительно и 2 – плохо. В экзаменационных билетах имеется 30 вопросов. Отлично подготовленный студент может ответить на все 30 вопросов, хорошо подготовленный – на 24, удовлетворительно – на 15, плохо – на 7.

Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.

Решение.

Гипотезы – «студент подготовлен отлично»;

– «студент подготовлен хорошо»;

– «студент подготовлен удовлетворительно»;

– «студент подготовлен плохо».

До опыта:

; ; ; ;

7. Что называют полной группой событий?

8. Какие события называют равновозможными? Приведите примеры таких событий.

9. Что называют элементарным исходом?

10. Какие исходы называю благоприятными данному событию?

11. Какие операции можно проводить над событиями? Дайте им определения. Как обозначаются? Приведите примеры.

12. Что называется вероятностью?

13. Чему равна вероятность достоверного события?

14. Чему равна вероятность невозможного события?

15. В каких пределах заключена вероятность?

16. Как определяется геометрическая вероятность на плоскости?

17. Как определяется вероятность в пространстве?

18. Как определяется вероятность на прямой?

19. Чему равна вероятность суммы двух событий?

20. Чему равна вероятность суммы двух несовместных событий?

21. Чему равна вероятность суммы n несовместных событий?

22. Какую вероятность называют условной? Приведите пример.

23. Сформулируйте теорему умножения вероятностей.

24. Как найти вероятность появления хотя бы одного из событий?

25. Какие события называют гипотезами?

26. Когда применяются формула полной вероятности и формулы Байеса?

Непосредственный подсчет случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. При этом, однако, надо знать правила, которым подчиняются вероятности при комбинации событий. Именно к этим правилам и относятся упомянутые в названии параграфа теоремы.

Первая из них относится к подсчету вероятности того, что осуществится хотя бы одно из нескольких событий.

Теорема сложения.

Пусть А и В - два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей:

Доказательство. Пусть - полная группа попарно несовместных событий. Если то среди этих элементарных событий имеется ровно событий, благоприятствующих А, и ровно событий, благоприятствующих В. Так как события А и В несовместны, то никакое из событий не может благоприятствовать обоим этим событиям. Событию (А или В), состоящему в том, что наступает хотя бы одно из этих двух событий, благоприятствует, очевидно, как каждое из событий благоприятствующих А, так и каждое из событий

Благоприятствующих В. Поэтому общее число событий, благоприятствующих событию (А или В), равно сумме откуда следует:

что и требовалось доказать

Нетрудно видеть, что теорема сложения, сформулированная выше для случая двух событий, легко переносится на случай любого конечного числа их. Именно если попарно несовместные события, то

Для случая трех событий, например, можно написать

Важным следствием теоремы сложения является утверждение: если события попарно несовместны и единственно возможны, то

Действительно, событие или или или по предположению достоверно и его вероятность, как было указано в § 1, равна единице. В частности, если означают два взаимно противоположных события, то

Проиллюстрируем теорему сложения примерами.

Пример 1. При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность сделать выстрел на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?

Решение. Если событие А означает получение оценки «отлично», а событие В - получение оценки «хорошо», то

Пример 2. В урне, содержащей шаров белого, красного и черного цвета, находятся белых шаров и I красных. Какова вероятность вынуть шар не черного цвета?

Решение. Если событие А состоит в появлении белого, а событие В - красного шара, то появление шара не черного цвета

означает появление либо белого, либо красного шара. Так как по определению вероятности

то по теореме сложения вероятность появления шара не черного цвета равна;

Эту задачу можно решить и так. Пусть событие С состоит в появлении черного шара. Число черных шаров равно так что Р (С) Появление шара не черного цвета является противоположным событием С, поэтому на основании указанного выше следствия из теоремы сложения имеем:

как и раньше.

Пример 3. В денежно-вещевой лотерее на серию в 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность какого-либо выигрыша на один лотерейный билет?

Решение. Если обозначить через А событие, состоящее в выпадении денежного выигрыша и через В - вещевого, то из определения вероятности следует

Интересующее нас событие представляет (А или В), поэтому из теоремы сложения вытекает

Таким образом, вероятность какого-либо выигрыша равна 0,2.

Прежде чем перейти к следующей теореме, необходимо ознакомиться с новым важным понятием - понятием условной вероятности. Для этой цели мы начнем с рассмотрения следующего примера.

Пусть на складе имеется 400 электрических лампочек, изготовленных на двух различных заводах, причем на первом изготовлено 75% всех лампочек, а на втором - 25%. Допустим, что среди лампочек, изготовленных первым заводом, 83% удовлетворяют условиям определенного стандарта, а для продукции второго завода этот процент равен 63. Определим вероятность того, что случайно взятая со склада лампочка окажется удовлетворяющей условиям стандарта.

Заметим, что общее число имеющихся стандартных лампочек состоит из лампочек, изготовленных первым

заводом, и 63 лампочек, изготовленных вторым заводом, то есть равно 312. Так как выбор любой лампочки следует считать равновозможным, то мы имеем 312 благоприятствующих случаев из 400, так что

где событие В состоит в том, что выбранная нами лампочка стандартна.

При этом подсчете не делалось никаких предположений о том, к продукции какого завода принадлежит выбранная нами лампочка. Если же какие-либо предположения такого рода сделать, то очевидно, что интересующая нас вероятность может измениться. Так, например, если известно, что выбранная лампочка изготовлена на первом заводе (событие А), то вероятность того, что она стандартна, будет уже не 0,78, а 0,83.

Такого рода вероятность, то есть вероятность события В при условии, что имеет место событие А, называют условной вероятностью события В при условии наступления события А и обозначают

Если мы в предыдущем примере обозначим через А событие, состоящее в том, что выбранная лампочка изготовлена на первом заводе, то мы можем написать

Теперь мы можем сформулировать важную теорему, относящуюся к подсчету вероятности совмещения событий.

Теорема умножения.

Вероятность совмещения событий А и В равна произведению вероятности одного из событий на условную вероятность другого в предположении, что первое имело место:

При этом под совмещением событий А и В понимается наступление каждого из них, то есть наступление как события А, так и события В.

Доказательство. Рассмотрим полную группу из равновозможных попарно несовместных событий каждое из которых может быть благоприятствующим или неблагоприятствующим как для события А, так и для события В.

Разобьем все эти события на четыре различные группы следующим образом. К первой группе отнесем те из событий которые благоприятствуют и событию А, и событию В; ко второй и третьей группам отнесем такие события которые благоприятствуют одному из двух интересующих нас событий и не благоприятствуют другому, например ко второй группе - те, которые благоприятствуют А, но не благоприятствуют В, а к третьей - те, которые благоприятствуют В, но не благоприятствуют А; наконец, к

четвертой группе отнесем те из событий которые не благоприятствуют ни А, ни В.

Так как нумерация событий не играет роли, то можно предположить, что это разбиение на четыре группы выглядит так:

I группа:

II группа:

III группа:

IV группа:

Таким образом, среди равновозможных и попарно несовместных событий имеется событий, благоприятствующих и событию А, и событию В, I событий, благоприятствующих событию А, но не благоприятствующих событию событий, благоприятствующих В, но не благоприятствующих А, и, наконец, событий, не благоприятствующих ни А, ни В.

Заметим, между прочим, что какая-либо из рассмотренных нами четырех групп (и даже не одна) может не содержать ни одного события. В этом случае соответствующее число, означающее количество событий в такой группе, будет равно нулю.

Произведенная нами разбивка на группы позволяет сразу написать

ибо совмещению событий А и В благоприятствуют события первой группы и только они. Общее число событий, благоприятствующих А, равно общему числу событий в первой и второй группах, а благоприятствующих В - общему числу событий в первой и третьей группах.

Подсчитаем теперь вероятность то есть вероятность события В при условии, что событие А имело место. Теперь события, входящие в третью и четвертую группы, отпадают, так как их появление противоречило бы наступлению события А, и число возможных случаев оказывается равным уже не . Из них событию В благоприятствуют лишь события первой группы, так что мы получаем:

Для доказательства теоремы достаточно теперь написать очевидное тождество:

и заменить в нем все три дроби вычисленными выше вероятностями. Мы придем к утверждавшемуся в теореме равенству:

Ясно, что написанное нами выше тождество имеет смысл лишь при что справедливо всегда, если только А не есть невозможное событие.

Так как события А и В равноправны, то, поменяв их местами, получим другую форму теоремы умножения:

Впрочем, это равенство можно получить тем же путем, что и предыдущее, если заметить, что воспользоваться тождеством

Сравнивая правые части двух выражений для вероятности Р(А и В), получим полезное равенство:

Рассмотрим теперь примеры, иллюстрирующие теорему умножения.

Пример 4. В продукции некоторого предприятия признаются годными (событие А) 96% изделий. К первому сорту (событие В) оказываются принадлежащими 75 изделий из каждой сотни годных. Определить вероятность того, что произвольно взятое изделие будет годным и принадлежит к первому сорту.

Решение. Искомая вероятность есть вероятность совмещения событий А и В. По условию имеем: . Поэтому теорема умножения дает

Пример 5. Вероятность попадания в цель при отдельном выстреле (событие А) равна 0,2. Какова вероятность поразить цель, если 2% взрывателей дают отказы (т. е. в 2% случаев выстрела не

Решение. Пусть событие В состоит в том, что выстрел произойдет, а В означает противоположное событие. Тогда по условию и согласно следствию из теоремы сложения . Далее, по условию .

Поражение цели означает совмещение событий А и В (выстрел произойдет и даст попадание), поэтому по теореме умножения

Важный частный случай теоремы умножения можно получить, если воспользоваться понятием независимости событий.

Два события называются независимыми, если вероятность одного из них не изменяется в результате того, наступило или не наступило другое.

Примерами независимых событий являются выпадение различного числа очков при повторном бросании игральной кости или той или иной стороны монет при повторном бросании монеты, так как очевидно, что вероятность выпадения герба при втором бросании равна независимо от того, выпал или не выпал герб в первом.

Аналогично, вероятность вынуть во второй раз белый шар из урны с белыми и черными шарами, если вынутый первым шар предварительно возвращен, не зависит от того, белый или черный шар был вынут в первый раз. Поэтому результаты первого и второго вынимания независимы между собой. Наоборот, если шар, вынутый первым, не возвращается в урну, то результат второго вынимания зависит от первого, ибо состав шаров, находящихся в урне после первого вынимания, меняется в зависимости от его исхода. Здесь мы имеем пример зависимых событий.

Пользуясь обозначениями, принятыми для условных вероятностей, можно записать условие независимости событий А и В в виде

Воспользовавшись этими равенствами, мы можем привести теорему умножения для независимых событий к следующей форме.

Если события А и В независимы, то вероятность их совмещения равна произведению вероятностей этих событий:

Действительно, достаточно в первоначальном выражении теоремы умножения положить , что вытекает из независимости событий, и мы получим требуемое равенство.

Рассмотрим теперь несколько событий: Будем называть их независимыми в совокупности, если вероятность появления любого из них не зависит от того, произошли ли какие-либо другие рассматриваемые события или нет

В случае событий, независимых в совокупности, теорема умножения может быть распространена на любое конечное число их, благодаря чему ее можно сформулировать так:

Вероятность совмещения событий независимых в совокупности, равна произведению вероятностей этих событий:

Пример 6. Рабочий обслуживает три автоматических станка, к каждому из которых нужно подойти для устранения неисправности, если станок остановится. Вероятность того, что первый станок не остановится в течение часа, равна 0,9. Та же вероятность для второго станка равна 0,8 и для третьего - 0,7. Определить вероятность того, что в течение часа рабочему не потребуется подойти ни к одному из обслуживаемых им станков.

Пример 7. Вероятность сбить самолет винтовочным выстрелом Какова вероятность уничтожения неприятельского самолета при одновременной стрельбе из 250 винтовок?

Решение. Вероятность того, что при одиночном выстреле самолет не будет сбит, по теореме сложения равна Тогда можно подсчитать с помощью теоремы умножения вероятность того, что самолет не будет сбит при 250 выстрелах, как вероятность совмещения событий. Она равна После этого мы можем снова воспользоваться теоремой сложения и найти вероятность того, что самолет будетсбит, как вероятность противоположного события

Отсюда видно, что, хотя вероятность сбить самолет одиночным винтовочным выстрелом ничтожно мала, тем не менее при стрельбе из 250 винтовок вероятность сбить самолет оказывается уже весьма ощутимой. Она существенно возрастает, если число винтовок увеличить. Так, при стрельбе из 500 винтовок вероятность сбить самолет, как легко подсчитать, равна при стрельбе из 1000 винтовок - даже .

Доказанная выше теорема умножения позволяет несколько расширить теорему сложения, распространив ее на случай совместимых событий. Ясно, что если события А и В совместимы, то вероятность наступления хотя бы одного из них не равна сумме их вероятностей. Например, если событие А означает выпадение четного

числа очков при бросании игральной кости, а событие В - выпадение числа очков, кратного трем, то событию (А или В) благоприятствует выпадение 2, 3, 4 и 6 очков, то есть

С другой стороны, то есть . Таким образом, в этом случае

Отсюда видно, что в случае совместимых событий теорема сложения вероятностей должна быть изменена. Как мы сейчас увидим, ее можно сформулировать таким образом, чтобы она была справедлива и для совместимых, и для несовместных событий, так что ранее рассмотренная теорема сложения окажется частным случаем новой.

Событий, которые А не благоприятствуют.

Все элементарные события, которые благоприятствуют событию (А или В), должны благоприятствовать либо только А, либо только В, либо и А и В. Таким образом, общее число таких событий равно

а вероятность

что и требовалось доказать.

Применяя формулу (9) к рассмотренному выше примеру выпадения числа очков при бросании игральной кости, получим:

что совпадает с результатом непосредственного подсчета.

Очевидно, что формула (1) является частным случаем (9). Действительно, если события А и В несовместны, то и вероятность совмещения

Примере. В электрическую цепь включены последовательно два предохранителя. Вероятность выхода из строя первого предохранителя равна 0,6, а второго 0,2. Определим вероятность прекращения питания в результате выхода из строя хотя бы одного из этих предохранителей.

Решение. Так как события А и В, состоящие в выходе из строя первого и второго из предохранителей, совместимы, то искомая вероятность определится по формуле (9):

Упражнения

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.



Рассказать друзьям