Взаимодействие металлов со сложными веществами схема. Физические и химические свойства металлов

💖 Нравится? Поделись с друзьями ссылкой

Взаимодействие металлов с простыми окислителями. Отношение металлов к воде, водным растворам кислот, щелочей и солей. Роль оксидной пленки и продуктов окисления. Взаимодействие металлов с азотной и концентрированной серной кислотами.

К металлам относятся все s-, d-, f-элементы, а также р-элементы, располагающиеся в нижней части периодической системы от диагонали, проведенной от бора к астату. В простых веществах этих элементов реализуется металлическая связь. Атомы металлов имеют мало электронов на внешней электронной оболочке, в количестве 1, 2, или 3. Металлы проявляют электроположительные свойства и обладают низкой электроотрицательностью, меньшей двух.

Металлам присуще характерные признаки. Это твердые вещества, тяжелее воды, с металлическим блеском. Металлы обладают высокой теплопроводностью и электропроводностью. Для них характерно испускание электронов под действием различных внешних воздействий: облучения светом, при нагревании, при разрыве (экзоэлектронная эмиссия).

Главным признаком металлов является их способность отдавать электроны атомам и ионам других веществ. Металлы являются восстановителями в подавляющем большинстве случаев. И это их характерное химическое свойство. Рассмотрим отношение металлов к типичным окислителям, к которым относятся из простых веществ – неметаллы, вода, кислоты. В таблице 1 приведены сведения об отношении металлов к простым окислителям.

Таблица 1

Отношение металлов к простым окислителям

С фтором реагируют все металлы. Исключение составляют алюминий, железо, никель, медь, цинк в отсутствии влаги. Эти элементы при реакции с фтором в начальный момент образуют пленки фторидов, защищающие металлы от дальнейшего реагирования.

При тех же условиях и причинах, железо пассивируется в реакции с хлором. По отношению к кислороду уже не все, а только ряд металлов образует плотные защитные пленки оксидов. При переходе от фтора к азоту (таблица 1) окислительная активность уменьшается и поэтому все большее число металлов не окисляется. Например, с азотом реагирует только литий и щелочноземельные металлы.

Отношение металлов к воде и водным растворам окислителей.

В водных растворах восстановительная активность металла характеризуется значением его стандартного окислительно-восстановительного потенциала. Из всего ряда стандартных окислительно-восстановительных потенциалов выделяют ряд напряжений металлов, который указан в таблице 2.

Таблица 2

Ряд напряжение металлов

Окислитель Уравнение электродного процесса Стандартный электродный потенциал φ 0 , В Восстановитель Условная активность восстановителей
Li + Li + + e - = Li -3,045 Li Активный
Rb + Rb + + e - = Rb -2,925 Rb Активный
K + K + + e - = K -2,925 K Активный
Cs + Cs + + e - = Cs -2,923 Cs Активный
Ca 2+ Ca 2+ + 2e - = Ca -2,866 Ca Активный
Na + Na + + e - = Na -2,714 Na Активный
Mg 2+ Mg 2+ +2 e - = Mg -2,363 Mg Активный
Al 3+ Al 3+ + 3e - = Al -1,662 Al Активный
Ti 2+ Ti 2+ + 2e - = Ti -1,628 Ti Ср. активности
Mn 2+ Mn 2+ + 2e - = Mn -1,180 Mn Ср. активности
Cr 2+ Cr 2+ + 2e - = Cr -0,913 Cr Ср. активности
H 2 O 2H 2 O+ 2e - =H 2 +2OH - -0,826 H 2 , рН=14 Ср. активности
Zn 2+ Zn 2+ + 2e - = Zn -0,763 Zn Ср. активности
Cr 3+ Cr 3+ +3e - = Cr -0,744 Cr Ср. активности
Fe 2+ Fe 2+ + e - = Fe -0,440 Fe Ср. активности
H 2 O 2H 2 O + e - = H 2 +2OH - -0,413 H 2 , рН=7 Ср. активности
Cd 2+ Cd 2+ + 2e - = Cd -0,403 Cd Ср. активности
Co 2+ Co 2+ +2 e - = Co -0,227 Co Ср. активности
Ni 2+ Ni 2+ + 2e - = Ni -0,225 Ni Ср. активности
Sn 2+ Sn 2+ + 2e - = Sn -0,136 Sn Ср. активности
Pb 2+ Pb 2+ + 2e - = Pb -0,126 Pb Ср. активности
Fe 3+ Fe 3+ +3e - = Fe -0,036 Fe Ср. активности
H + 2H + + 2e - =H 2 H 2 , рН=0 Ср. активности
Bi 3+ Bi 3+ + 3e - = Bi 0,215 Bi Малой активн.
Cu 2+ Cu 2+ + 2e - = Cu 0,337 Cu Малой активн.
Cu + Cu + + e - = Cu 0,521 Cu Малой активн.
Hg 2 2+ Hg 2 2+ + 2e - = Hg 0,788 Hg 2 Малой активн.
Ag + Ag + + e - = Ag 0,799 Ag Малой активн.
Hg 2+ Hg 2+ +2e - = Hg 0,854 Hg Малой активн.
Pt 2+ Pt 2+ + 2e - = Pt 1,2 Pt Малой активн.
Au 3+ Au 3+ + 3e - = Au 1,498 Au Малой активн.
Au + Au + + e - = Au 1,691 Au Малой активн.

В данном ряду напряжений приведены также значения электродных потенциалов водородного электрода в кислой (рН=0), нейтральной (рН=7), щелочной (рН=14) средах. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы – восстановителями. Чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы. Чем ближе металл к началу ряда, тем более сильным восстановителем он является.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Следует иметь в виду, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей происходит лишь в случае металлов, расположенных в ряду напряжений после магния.

Все металлы разделяют на три условные группы, что отражено в следующей таблице.

Таблица 3

Условное деление металлов

Взаимодействие с водой. Окислителем в воде является ион водорода. Поэтому окисляться водой могут только те металлы, стандартные электродные потенциалы которых ниже потенциала ионов водорода в воде. Он зависит от рН среды и равен

φ = -0,059рН.

В нейтральной среде (рН=7) φ = -0,41 В. Характер взаимодействия металлов с водой представлен в таблице 4.

Металлы из начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Но уже магний вытесняет водород только из горячей воды. Обычно металлы, расположенные между магнием и свинцом не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, которые обладают защитным действием.

Таблица 4

Взаимодействие металлов с водой в нейтральной среде

Взаимодействие металлов с хлорводородной кислотой.

Окислителем в соляной кислоте является ион водорода. Стандартный электродный потенциал водородного иона равен нулю. Поэтому все активные металлы и металлы средней активности должны реагировать с кислотой. Только для свинца проявляется пассивация.

Таблица 5

Взаимодействие металлов с соляной кислотой

Медь может быть растворена в очень концентрированной соляной кислоте, не смотря на то, что относится к малоактивным металлам.

Взаимодействие металлов с серной кислотой происходит различно и зависит от её концентрации.

Взаимодействие металлов с разбавленной серной кислотой. Взаимодействие с разбавленной серной кислотой осуществляется так же, как и с соляной кислотой.

Таблица 6

Взаимодействие металлов с разбавленной серной кислотой

Разбавленная серная кислота окисляет своим ионом водорода. Она взаимодействует с теми металлами, электродные потенциалы которых ниже, чем у водорода. Свинец не растворяется в серной кислоте при её концентрации ниже 80%, так как образующаяся при взаимодействии свинца с серной кислотой соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Взаимодействие металлов с концентрированной серной кислотой.

В концентрированной серной кислоте в роли окислителя выступает сера в степени окисления +6. Она входит в состав сульфат-иона SO 4 2- . Поэтому концентрированной кислотой окисляются все металлы, стандартный электродный потенциал которых меньше, чем у окислителя. Наибольшее значение электродного потенциала в электродных процессах с участием сульфат-иона в качестве окислителя равно 0,36 В. Вследствие этого с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Для металлов средней активности (Al, Fe) имеет место пассивация из-за образования плотных пленок оксидов. Олово окисляется до четырехвалентного состояния с образованием сульфата олова (IV):

Sn + 4 H 2 SO 4 (конц.) = Sn(SO 4) 2 +2SO 2 + 2H 2 O.

Таблица 7

Взаимодействие металлов с концентрированной серной кислотой

Свинец окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца. В горячей концентрированной серной кислоте растворяется ртуть с образованием сульфатов ртути (I) и ртути (II). В кипящей концентрированной серной кислоте растворяется даже серебро.

Следует иметь в виду, что чем активнее металл, тем глубже степень восстановления серной кислоты. С активными металлами кислота восстанавливается в основном до сероводорода, хотя присутствуют и другие продукты. Например

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ +4H 2 O;

4Zn +5H 2 SO 4 = 4ZnSO 4 = 4ZnSO 4 +H 2 S +4H 2 O.

Взаимодействие металлов с разбавленной азотной кислотой.

В азотной кислоте в качестве окислителя выступает азот в степени окисления +5. Максимальное значение электродного потенциала для нитрат-иона разбавленной кислоты как окислителя равно 0,96 В. Вследствие такого большого значения, азотная кислота более сильный окислитель, чем серная. Это видно из того, что азотная кислота окисляет серебро. Восстанавливается кислота тем глубже, чем активнее металл и чем более разбавлена кислота.

Таблица 8

Взаимодействие металлов с разбавленной азотной кислотой

Взаимодействие металлов с концентрированной азотной кислотой.

Концентрированная азотная кислота обычно восстанавливается до диоксида азота. Взаимодействие концентрированной азотной кислоты с металлами представлено в таблице 9.

При использовании кислоты в недостатке и без перемешивания активные металлы восстанавливают её до азота, а металлы среднеё активности до монооксида углерода.

Таблица 9

Взаимодействие концентрированной азотной кислоты с металлами

Взаимодействие металлов с растворами щелочей.

Щелочами металлы окисляться не могут. Это обусловлено тем, что щелочные металлы являются сильными восстановителями. Поэтому их ионы самые слабые окислители и в водных растворах окислительных свойств не проявляют. Однако в присутствии щелочей окисляющее действие воды проявляется в большей степени, чем в их отсутствие. Благодаря этому, в щелочных растворах металлы окисляются водой с образование гидроксидов и водорода. Если оксид и гидроксид относятся к амфотерным соединениям, то они будут растворяться в щелочном растворе. В результате пассивные в чистой воде металлы энергично взаимодействуют с растворами щелочей.

Таблица 10

Взаимодействие металлов с растворами щелочей

Процесс растворения представляется в виде двух стадий: окисления металла водой и растворения гидроксида:

Zn + 2HOH = Zn(OH) 2 ↓ + H 2 ;

Zn(OH) 2 ↓ + 2NaOH = Na 2 .

Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают характерными свойствами, а именно высокой электро- и теплопроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Заметим, что из 118 химических элементов, которые были открыты на данный момент, к металлам следует относить:

  • среди группы щёлочноземельных металлов 6 элементов;
  • среди щелочных металлов 6 элементов;
  • среди переходных металлов 38;
  • в группе лёгких металлов 11;
  • среди полуметаллов 7 элементов,
  • 14 среди лантаноидов и лантан,
  • 14 в группе актиноидов и актиний,
  • Вне определения находятся бериллий и магний.

Исходя из этого, к металлам относятся 96 элементов. Рассмотрим подробней, с чем реагируют металлы. Поскольку на внешнем электронном уровне у большинства металлов находится небольшое количество электронов от 1 до 3-х, то они в большинстве своих реакций могут выступать в качестве восстановителей (то есть они отдают свои электроны другим элементам).

Реакции с наиболее простыми элементами

  • Кроме золота и платины, абсолютно все металлы реагируют с кислородом. Заметим также, что реакция при высоких температурах происходит с серебром, однако оксид серебра(II) при нормальных температурах не образуется. В зависимости от свойств металла, в результате реакции с кислородом образовываются оксиды, надпероксиды и пероксиды.

Приведем примеры каждого из химического образования:

  1. оксид лития – 4Li+O 2 =2Li 2 O;
  2. надпероксид калия – K+O 2 =KO 2 ;
  3. пероксид натрия – 2Na+O 2 =Na 2 O 2 .

Для того, чтобы получить оксид из пероксида, его нужно восстановить тем же металлом. Например, Na 2 O 2 +2Na=2Na 2 O. С малоактивными и со средними металлами подобная реакция будет происходить только при нагревании, к примеру: 3Fe+2O 2 =Fe 3 O 4 .

  • С азотом металлы могут реагировать только с активными металлами, однако при комнатной температуре может взаимодействовать только литий, образуя при этом нитриды – 6Li+N 2 =2Li 3 N, однако при нагревании происходит такая химическая реакция 2Al+N 2 =2AlN, 3Ca+N 2 =Ca 3 N 2 .
  • С серой, как и с кислородом, реагируют абсолютно все металлы, при этом исключением являются золото и платина. Заметим, что железо может взаимодействовать только при нагревании с серой, образовывая при этом сульфид: Fe+S=FeS
  • Только активные металлы могут реагировать с водородом. К ним относятся металлы группы IA и IIA, кроме берилия. Такие реакции могут осуществляться только при нагревании, образовывая гидриды.

    Так как степень окисления водорода считается?1, то металлы в данном случае выступают как восстановители: 2Na+H 2 =2NaH.

  • Реагируют с углеродом также самые активные металлы. В результате этой реакции образовываются ацетилениды или метаниды.

Рассмотрим, какие металлы реагируют с водой и что они дают в результате этой реакции? Ацетилены при взаимодействии с водой будут давать ацетилен, а метан получится в результате реакции воды с метанидами. Приведем примеры данных реакций:

  1. Ацетилен – 2Na+2C= Na 2 C 2 ;
  2. Метан - Na 2 C 2 +2H 2 O=2NaOH+C 2 H 2 .

Реакция кислот с металлами

Металлы с кислотами могут также реагировать по-разному. Со всеми кислотами реагируют только те металлы, которые в ряду стоят электрохимической активности металлов до водорода.

Приведем пример реакции замещения, которая показывает, с чем реагируют металлы. По-другому такая реакция называется окислительно-восстановительной: Mg+2HCl=MgCl 2 +H 2 ^.

Некоторые кислоты могут также взаимодействовать с металлами, которые стоят после водорода: Cu+2H 2 SO 4 =CuSO 4 +SO 2 ^+2H 2 O.

Заметим, что разбавленная такая кислота может реагировать с металлом по приведенной классической схеме: Mg+H 2 SO 4 =MgSO 4 +H 2 ^.

В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы.

Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений.

В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:

Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.

Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.

Общие химические свойства металлов

1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:

    с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;

    с серой металлы образуют сульфиды – соли сероводородной кислоты;

    с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1);

    с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия - пероксид $Na_2O_2$; а калий и цезий горят с образованием надпероксидов $MeO_2$.

2) Следует обратить внимание на особенности взаимодействие металлов с водой:

    Активные металлы , находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:$Ca + 2H_2O = Ca(OH)_2 + H_2\uparrow$

    Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.

    Металлы средней активности окисляются водой при нагревании до оксида:

    $6Cr + 6H_2O \xrightarrow{t, ^\circ C} 2Cr_2O_3 + 3H_2\uparrow$

    Неактивные металлы (Au, Ag, Pt) - не реагируют с водой.

$\hspace{1.5cm} \xrightarrow {} MOH +H_2\uparrow$ активные металлы (до Al)

$H_2O + M \xrightarrow {} \hspace{1cm} \ne \hspace{1cm}$ неактивные металлы (после Н)

Более подробно взаимодействие металлов с водой рассмотрено в темах, посвященных химии отдельных групп.

3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода:

$\mathrm{Mg} + 2\mathrm{HCl} = \mathrm{MgCl}_2 + \mathrm{H}_2$

4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли и водорода в этих реакциях выделяется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему "Взаимодействие азотной кислоты с металлами и неметаллами.

Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).

5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла . Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений.

Запомнить! Для протекания реакции между металлом и солью другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде. Металл вытесняет из соли только более слабый металл.

Например, для вытеснения меди из водного раствора сульфата меди подходит железо,

$\mathrm{CuSO}_4 + \mathrm{Fe} = \mathrm{FeSO}_4 + \mathrm{Cu}$

но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится

$\mathrm{CuSO}_4 + \mathrm{Pb} = \mathrm{PbSO}_4\downarrow + \mathrm{Cu}$

Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает.

Общие химические свойства металлов обобщены в таблице:

Уравнение реакции Продукты реакции Примечания
с простыми веществами - неметаллами
с кислородом

$4Li + O_2 = 2Li_2O$

оксиды $O^{-2}$

$2Na + O_2 = Na_2O_2$

пероксиды $(O_2)^{-2}$ только натрий

$K + O_2 = KO_2$

надпероксиды $(O_2)^{-2}$ надпероксиды при горении образуют K, Rb, Cs
с водородом

$Ca + H_2 = CaH_2$

гидриды щелочные металлы 0 при комнатной температуре; остальные металлы - при нагревании
с галогенами

$Fe + Cl_2 = Fe^{+3}Cl_3$

хлориды и др.

при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3
с серой
сульфиды при взаимодействии с серой и иодом железо приобретает степень окисления +2
с азотом и фосфором

$3Mg + N_2 = Mg_3N_2 $

нитриды * при комнатной температуре с азотом реагируют только литий и магний

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Благодаря наличию свободных электронов (“электронного газа”) в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность – способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий – литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются “легкими металлами”.

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

1. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

2. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

3. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) – не реагируют.

4. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте – металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg – только серной (концентрированной) и азотной кислотами, а Рt и Аи – «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.



Рассказать друзьям