Иррациональные числа — Гипермаркет знаний. Что такое рациональные и иррациональные числа

💖 Нравится? Поделись с друзьями ссылкой

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.

Если действительное число не является рациональным, то оно иррациональное число . Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.

Действительное число называется алгебраическим , если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным .

Некоторые свойства:

    Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).

    Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.

    Все рациональные числа являются алгебраическими (обратное утверждение – неверное).

    Каждое вещественное трансцендентное число является иррациональным.

    Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

    Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).

    Множество иррациональных чисел несчётно.

При решении задач бывает удобно вместе с иррациональным числом a + b√ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b√ c : его сумма и произведение с исходным – рациональные числа. Так что a + b√ c и a – b√ c являются корнями квадратного уравнения с целыми коэффициентами.

Задачи с решениями

1. Докажите, что

а) число √ 7 ;

б) число lg 80;

в) число √ 2 + 3 √ 3 ;

является иррациональным.

а) Допустим, что число √ 7 рациональное. Тогда, существуют такие взаимно простые p и q, что √ 7 = p/q, откуда получаем p 2 = 7q 2 . Так как p и q взаимно простые, то p 2 , а значит и p делится на 7. Тогда р = 7k, где k – некоторое натуральное число. Отсюда q 2 = 7k 2 = pk, что противоречит тому, что p и q взаимно просты.

Итак, предположение ложно, значит, число √ 7 иррациональное.

б) Допустим, что число lg 80 рациональное. Тогда существуют такие натуральные p и q, что lg 80 = p/q, или 10 p = 80 q , откуда получаем 2 p–4q = 5 q–p . Учитывая, что числа 2 и 5 взаимно простые, получаем, что последнее равенство возможно только при p–4q = 0 и q–p = 0. Откуда p = q = 0, что невозможно, так как p и q выбраны натуральными.

Итак, предположение ложно, значит, число lg 80 иррациональное.

в) Обозначим данное число через х.

Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению

х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.

Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.

Итак, данное число √ 2 + 3 √ 3 является иррациональным.

2. Известно, что числа a, b, √ a –√ b , – рациональные. Докажите, что √ a и √ b – тоже рациональные числа.

Рассмотрим произведение

(√ a – √ b )·(√ a + √ b ) = a – b.

Число √ a +√ b , которое равно отношению чисел a – b и √ a –√ b , является рациональным, так как частное от деления двух рациональных чисел – число рациональное. Сумма двух рациональных чисел

½ (√ a + √ b ) + ½ (√ a – √ b ) = √ a

– число рациональное, их разность,

½ (√ a + √ b ) – ½ (√ a – √ b ) = √ b ,

тоже рациональное число, что и требовалось доказать.

3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.

4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству

(a + b√ 2 ) 2n + (c + d√ 2 ) 2n = 5 + 4√ 2 ,

где n – натуральное число?

Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:

(a – b√ 2 ) 2n + (c – d√ 2 ) 2n = 5 – 4√ 2 .

Но 5 – 4√ 2 (a – b√ 2 ) 2n + (c – d√ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.

Ответ: не существуют.

5. Если отрезки с длинами a, b, c образуют треугольник, то для всех n = 2, 3, 4, . . . отрезки с длинами n √ a , n √ b , n √ c так же образуют треугольник. Докажите это.

Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт

Поэтому мы имеем

( n √ a + n √ b ) n > a + b > c = ( n √ c ) n ,

N √ a + n √ b > n √ c .

Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.

6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.

Как известно, рациональные числа выражаются десятичными дробями, которые имеют период начиная с некоторого знака. Поэтому достаточно доказать, что данная дробь не является периодической ни с какого знака. Предположим, что это не так, и некоторая последовательность T, состоящая из n цифр, является периодом дроби, начиная с m-го знака после запятой. Ясно, что среди цифр после m-го знака встречаются ненулевые, поэтому в последовательности цифр T есть ненулевая цифра. Это означает, что начиная с m-ой цифры после запятой, среди любых n цифр подряд есть ненулевая цифра. Однако в десятичной записи данной дроби должна присутствовать десятичная запись числа 100...0 = 10 k , где k > m и k > n. Понятно, что эта запись встретится правее m-ой цифры и содержит более n нулей подряд. Тем самым, получаем противоречие, завершающее доказательство.

7. Дана бесконечная десятичная дробь 0,a 1 a 2 ... . Докажите, что цифры в ее десятичной записи можно переставить так, чтобы полученная дробь выражала рациональное число.

Напомним, что дробь выражает рациональное число в том и только том случае, когда она периодическая, начиная с некоторого знака. Цифры от 0 до 9 разделим на два класса: в первый класс включим те цифры, которые встречаются в исходной дроби конечное число раз, во второй класс – те, которые встречаются в исходной дроби бесконечное число раз. Начнем выписывать периодическую дробь, которая может быть получена из исходной перестановкой цифр. Вначале после нуля и запятой напишем в произвольном порядке все цифры из первого класса - каждую столько раз, сколько она встречается в записи исходной дроби. Записанные цифры первого класса будут предшествовать периоду в дробной части десятичной дроби. Далее, запишем в некотором порядке по одному разу цифры из второго класса. Эту комбинацию объявим периодом и будем повторять ее бесконечное число раз. Таким образом, мы выписали искомую периодическую дробь, выражающую некоторое рациональное число.

8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.

Пусть m – произвольно заданное натуральное число. Разобьем данную бесконечную десятичную дробь на отрезки, по m цифр в каждом. Таких отрезков будет бесконечно много. С другой стороны, различных систем, состоящих из m цифр, существует только 10 m , т. е. конечное число. Следовательно, хотя бы одна из этих систем должна повторяться здесь бесконечно много раз.

Замечание. Для иррациональных чисел √ 2 , π или е мы даже не знаем, какая цифра повторяется бесконечно много раз в представляющих их бесконечных десятичных дробях, хотя каждое из этих чисел, как легко можно доказать, содержит по крайней мере две различные такие цифры.

9. Докажите элементарным путём, что положительный корень уравнения

является иррациональным.

Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).

Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:

p 5 + pq 4 = 10q 5 ,

откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).

Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.

10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

в) Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты - рациональные числа.)

а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2)/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.

б) Пусть (a 1 ; b 1), (a 2 ; b 2) и (a 3 ; b 3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:

(x – a 1) 2 + (y – b 1) 2 = (x – a 2) 2 + (y – b 2) 2 ,

(x – a 1) 2 + (y – b 1) 2 = (x – a 3) 2 + (y – b 3) 2 .

Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.

в) Такая сфера существует. Например, сфера с уравнением

(x – √ 2 ) 2 + y 2 + z 2 = 2.

Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.

Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :

x 2 – 2√ 2 x + 2 + y 2 + z 2 = 2

√ 2 = (x 2 + y 2 + z 2)/(2x),

чего не может быть при рациональных x, y, z и иррациональном √ 2 . Итак, О(0; 0; 0) – единственная рациональная точка на рассматриваемой сфере.

Задачи без решений

1. Докажите, что число

\[ \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}} \]

является иррациональным.

2. При каких целых m и n выполняется равенство (5 + 3√ 2 ) m = (3 + 5√ 2 ) n ?

3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?

4. Могут ли числа 1, √ 2 , 4 быть членами (не обязательно соседними) арифметической прогрессии?

5. Докажите, что при любом натуральном n уравнение (х + у√ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).

Иррациона́льное число́ - это вещественное число , которое не является рациональным , то есть не может быть представлено в виде дроби , где - целые числа , . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби , при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим , либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно , является множеством второй категории .

Примеры

Иррациональные числа
- ζ(3) - √2 - √3 - √5 - - - - -

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где - целое число , а - натуральное число . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Множество иррациональных чисел обычно обозначается заглавной латинской буквой I {\displaystyle \mathbb {I} } в полужирном начертании без заливки. Таким образом: I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Энциклопедичный YouTube

  • 1 / 5

    Иррациональными являются:

    Примеры доказательства иррациональности

    Корень из 2

    Допустим противное: 2 {\displaystyle {\sqrt {2}}} рационален , то есть представляется в виде дроби m n {\displaystyle {\frac {m}{n}}} , где m {\displaystyle m} - целое число , а n {\displaystyle n} - натуральное число .

    Возведём предполагаемое равенство в квадрат:

    2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

    История

    Античность

    Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

    Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу . Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

    Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение [ ] .

    Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.


    Материал этой статьи представляет собой начальную информацию про иррациональные числа . Сначала мы дадим определение иррациональных чисел и разъясним его. Дальше приведем примеры иррациональных чисел. Наконец, рассмотрим некоторые подходы к выяснению, является ли заданное число иррациональным или нет.

    Навигация по странице.

    Определение и примеры иррациональных чисел

    При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами , они представляют так называемые иррациональные числа.

    Так мы подошли к определению иррациональных чисел .

    Определение.

    Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами .

    Озвученное определение позволяет привести примеры иррациональных чисел . Например, бесконечная непериодическая десятичная дробь 4,10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22,353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).

    Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде , и т.п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух , число «пи» π=3,141592… , число e=2,718281… и золотое число .

    Иррациональные числа также можно определить через действительные числа , которые объединяют рациональные и иррациональные числа.

    Определение.

    Иррациональные числа – это действительные числа, не являющиеся рациональными.

    Является ли данное число иррациональным?

    Когда число задано не в виде десятичной дроби, а в виде некоторого , корня, логарифма и т.п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.

    Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:

    • конечные и бесконечные периодические десятичные дроби.

    Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа , а оно не является рациональным.

    Если же выражение, которым задано число, содержит несколько иррациональных чисел, знаки корня, логарифмы, тригонометрические функции, числа π , e и т.п., то требуется проводить доказательство иррациональности или рациональности заданного числа в каждом конкретном случае. Однако существует ряд уже полученных результатов, которыми можно пользоваться. Перечислим основные из них.

    Доказано, что корень степени k из целого числа является рациональным числом только тогда, когда число под корнем является k-ой степенью другого целого числа, в остальных случаях такой корень задает иррациональное число. Например, числа и - иррациональные, так как не существует целого числа, квадрат которого равен 7 , и не существует целого числа, возведение которого в пятую степень дает число 15 . А числа и не являются иррациональными, так как и .

    Что касается логарифмов, то доказать их иррациональность иногда удается методом от противного. Для примера докажем, что log 2 3 является иррациональным числом.

    Допустим, что log 2 3 рациональное число, а не иррациональное, то есть его можно представить в виде обыкновенной дроби m/n . и позволяют записать следующую цепочку равенств: . Последнее равенство невозможно, так как в его левой части нечетное число , а в правой части – четное. Так мы пришли к противоречию, значит, наше предположение оказалось неверным, и этим доказано, что log 2 3 - иррациональное число.

    Заметим, что lna при любом положительном и отличном от единицы рациональном a является иррациональным числом. Например, и - иррациональные числа.

    Также доказано, что число e a при любом отличном от нуля рациональном a является иррациональным, и что число π z при любом отличном от нуля целом z является иррациональным. К примеру, числа - иррациональные.

    Иррациональными числами также являются тригонометрические функции sin , cos , tg и ctg при любом рациональном и отличном от нуля значении аргумента. Например, sin1 , tg(−4) , cos5,7 , являются иррациональными числами.

    Существуют и другие доказанные результаты, на мы ограничимся уже перечисленными. Следует также сказать, что при доказательстве озвученных выше результатов применяется теория, связанная с алгебраическими числами и трансцендентными числами .

    В заключение отметим, что не стоит делать поспешных выводов относительно иррациональности заданных чисел. К примеру, кажется очевидным, что иррациональное число в иррациональной степени есть иррациональное число. Однако это не всегда так. В качестве подтверждения озвученного факта приведем степень . Известно, что - иррациональное число, а также доказано, что - иррациональное число, но - рациональное число. Также можно привести примеры иррациональных чисел, сумма, разность, произведение и частное которых есть рациональные числа. Более того, рациональность или иррациональность чисел π+e , π−e , π·e , π π , π e и многих других до сих пор не доказана.

    Список литературы.

    • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
    • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
    • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.


Рассказать друзьям