Исследовательская работа "сила трения". Исследовательская работа «Сила трение и её полезные свойства

💖 Нравится? Поделись с друзьями ссылкой

Проделаем несколько опытов.

Опыт 1. Поместим деревянный брусок на деревянный стол. Прикрепим к бруску динамометр и начнем прикладывать усилие к динамометру. Указатель динамометра покажет, что на брусок будет действовать сила , которая возрастает с ростом наших усилий. Брусок, несмотря на возрастание силы , некоторое время остается в покое. Покой же возможен в том случае, когда действие сил на тело компенсируется. Следовательно, можно предположить, что между бруском и столом возникает какая-то сила, противоположно направленная силе , действующей со стороны динамометра. Эту силу назвали силой трения покоя (рис.4.35).

Ее обозначают буквой . Опыт показывает, что с ростом силы будет расти и сила трения покоя .

Продолжим наши эксперименты.

Опыт 2. Будем увеличивать силу , действующую со стороны динамометра. В некоторый момент времени брусок все-таки сдвинется с места, и будет продолжать двигаться под действием некоторой постоянной силы равномерно и прямолинейно. Равномерность движения бруска означает, что на наш брусок действует сила, препятствующая его движению. Она равна по модулю силе и направлена противоположно ей. (рис.4.36).

Эту силу стали называть силой трения скольжения и обозначают буквой .

Опыт 3. Повторим данный опыт, поместив деревянный брусок на стеклянный стол. Мы обнаружим, что результаты опыта не изменятся. Изменится только численное значение сил , и . А это означает, что силы трения возникают на любых соприкасающихся поверхностях. Такой вид трения называется сухим трением.

Изучением сил сухого трения занимались французские физики Шарль Огюстен Кулон и Гильом Амонтон. Экспериментально они установили следующие законы сухого трения:

1. Максимальная сила трения покоя равна силе трения скольжения

2. Сила трения скольжения прямо пропорциональна силе нормального давления, т.е.

где m - коэффициент пропорциональности, который определяется, родом материала, соприкасающихся поверхностей, качеством их обработки и т.д. Этот коэффициент пропорциональности называется коэффициентом трения скольжения.

3. Сила сухого трения не зависит от площади соприкасающихся поверхностей.

Формула (1) называется законом Кулона - Амонтона.

Опыт 4 . Поместим на горизонтальный стол брусок и деревянный цилиндр одинаковой массы и приведем их в движении в одном направлении с одинаковой скоростью (рис. 4.37).

Эксперимент покажет, что цилиндр отъедет на гораздо большее расстояние, чем брусок. Это означает, что сила трения, действующая на цилиндр гораздо меньше, чем силы трения скольжения бруска. Необходимо обратить внимание на то, что в процессе движения брусок соприкасается с поверхностью стола только одной своей поверхностью, а цилиндр катится по ней. Сила трения, возникающая тогда, когда тело катится по какой-либо поверхности, называется трением качения. Величина этой силы находится по формуле

В этой формуле k - коэффициентом трения качения.

Необходимо отметить, что физический смысл коэффициента трения скольжения и коэффициента трения качения совершенно разный. Поэтому их нельзя сравнивать.

Проведя эти опыты, мы с вами выяснили, что существует три вида сухого трения: трение покоя, трение скольжения, трение качения.

Оказалось, что в природе существует и жидкое трение, которое возникает между соприкасающимися слоями жидкости и газа. Сила сопротивления, возникающая при движении твердых тел в жидкостях и газах, так же является силой жидкого трения. Жидкое трение изучал И. Ньютон. Жидкое трение гораздо меньше сухого трения. Законы жидкого трения, установленные Ньютоном, достаточно сложны и вы их узнаете при дальнейшем изучении физики.

Попытаемся разобраться в причине возникновения сил сухого трения. Поверхности соприкасающихся тел имеют шероховатости, чаще всего невидимые невооруженным глазом (рис.4.38).

Шероховатости поверхности одного тела приходят в зацепление с шероховатостями поверхности соприкасающегося с ним тела, и при этом возникает деформация, появляется упругая сила, препятствующая относительному движению соприкасающихся тел. Это и есть сила сухого трения, которая, как и сила упругости, имеет электромагнитную природу.

Попробуем теперь объяснить законы сухого трения, установленные Кулоном и Амонтоном. Так, если тело лежит на горизонтальном столе, то шероховатости обоих поверхностей не деформированы вдоль этой поверхности. Следовательно, сила трения между ними равна нулю. Как только мы подействуем на тело динамометром вдоль стола, то возникнут деформации шероховатостей и появится сила трения, равная показаниям динамометра и противоположно направленная. Если при этом тело остается в покое, то эта сила и будет силой трения покоя. С ростом силы натяжения будет увеличиваться и сила трения покоя, т.к. возрастает деформация шероховатостей. Но, рано или поздно, произойдет срыв между зацеплениями шероховатостей, и тело придет в движение. В момент начала движения сила трения покоя достигает своего максимального значения и в дальнейшем она практически не изменяется. Сила трения, действующая в процессе движения, называется силой трения скольжения. Следовательно, максимальная сила трения покоя равна силе трения скольжения.

Очевидно и другое: если тело прижимать к поверхности все с большей силой (рис.4.38), то зацепление между шероховатостями соприкасающихся поверхностей увеличится, что приведет к увеличению силы трения. Это легко доказать опытным путем: при увеличении силы давления на тело, показания динамометра будут возрастать. Это доказывает закон Кулона – Амонтона.

Рис.4.39а и б

Если помещать деревянный брусок на стол разными его гранями, имеющие разные площади, и каждый раз двигать его равномерно и прямолинейно с помощью динамометра (рис.4.40), то можно обнаружить, что сила трения остается неизменной, т.е. сила трения не зависит от площади соприкасающихся поверхностей. Это подтверждает третий закон сухого трения.

Понятно и то, что если отшлифовать соприкасающиеся поверхности, то сила трения уменьшится. Происходит это из-за того, что размеры шероховатостей уменьшаются.

Оказывается, что если поверхности будут отшлифованы так, что их шероховатости (бугорки, впадины) станут соизмеримыми с размерами атомов, то сила трения резко возрастет. Это происходит потому, что с уменьшением расстояния между атомами электромагнитные силы их взаимодействия возрастают.

Необходимо отметить, что в том случае, когда тело движется по горизонтальной поверхности под действием силы, направленной вдоль этой поверхности, то в роли силы нормального давления будет выступать сила тяжести mg . В этом случае сила трения скольжения будет равна:

Трение, как и любое физическое явление, может быть и вредным и полезным. В том случае, когда трение вредно, его стараются уменьшить. Для этого используют смазку, заменяя сухое трение жидким, применяют магнитную или воздушную подушку, применяют шариковые, роликовые подшипники или колеса, заменяя трение скольжения трением качения.

Когда же трение полезно, то его стараются увеличить. В гололед посыпают тротуары и дороги песком, применяют шипы на обуви или автошинах, или подбирают соприкасающиеся материалы с большим коэффициентом трения, например, материалы из резины.

Трудно представить себе, что происходило бы на Земле, если бы исчезли силы сухого трения.

Вопросы для самоконтроля:

1. Какая сила называется силой трения?

2. Как возникает сила трения?

3. Какова природа силы трения?

4. В чем состоит различие между силой трения покоя и силой трения скольжения?

5. Какое трение называется сухим?

6. Каковы итоги исследования сухого трения Кулоном и Амонтоном?

7. Когда возникает сила трения качения?

8. От каких факторов зависит коэффициент трения скольжения?

9. Как изменится сила трения, если увеличить а)площадь соприкосновения двух тел; б)нагревать тела; в) отшлифовать соприкасающиеся поверхности?

10. Приведите примеры вредного и полезного проявления сил трения.

11. Какое трение называется жидким и как оно возникает?

12. Для чего смазывают трущиеся детали, например, солидолом?

13. Напишите реферат об исследованиях сухого трения, которые провели французские физики Ш.О. Кулон и Г. Амонтон.

Особенность педагогической системы многоуровневого непрерывного креативного образования НФТМ-ТРИЗ состоящая в том, что учащийся из объекта обучения становится субъектом творчества, а учебный материал (знания) из предмета усвоения становится средством достижения некоторой созидательной цели , до недавнего времени, являлась моей мечтой, как учителя. Сегодня, медленно, но верно, мечта становится реальностью.

Внести в урок элемент творчества, навести мосты между физикой и лирикой, связать скучные физические законы с накопленным жизненным опытом учащихся, - всегда было одной из важных составляющих моей педагогической деятельности. Но одно дело - «вариться» в собственном котле, а другое, - когда на всех уровнях образования идет непрерывное формирование творческого мышления и развитие творческих способностей обучающихся, поиск высокоэффективных творческих решений.

Немецкий педагог А. Дистервег сказал: «Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетия. Однако его следует вести к цели не с завязанными глазами, а зрячим: он должен воспринимать истину не как готовый результат, а должен ее открыть. Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать не только в качестве простого зрителя. Но ученик должен напрягать свои силы, ему ничто не должно доставаться даром. Дается только тому, кто стремится». Как правильно и в унисон с требованиями нового образовательного Стандарта сказано!

Я с каким-то душевным трепетом предвкушаю встречу с семиклассниками, готовыми самостоятельно ставить цели, ориентироваться в ситуации, творчески мыслить, действовать…

Но тогда и учителю придется по-новому принять для себя принцип Гиппократа «не навреди» как: помоги ребенку развить личность, обрести духовно-нравственный опыт и социальную компетентность.

В Федеральном государственном образовательном стандарте основного общего образования (ФГОС ООО) в требованиях к естественнонаучным предметам отмечаются, в частности,

Овладение умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты;

Овладение умением сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни .

О том, как, применяя блочную структуру сдвоенного креативного урока , эти требования можно реализовать, используя приемы и методы НФТМ-ТРИЗ, я покажу на примере урока физики в 7-м классе по теме «Сила трения. Виды трения. Трение в природе и технике».

Принцип работы - воспитание личности через творчество.

Задача - создать педагогические условия для выявления творческих способностей и их развития.

Эпиграфом к уроку взяла два афоризма (хотя, они отражают, на мой взгляд, всю линию развития творческого мышления и способностей, поэтому могут занять почетное место в оформлении кабинета):

Человек рожден для мышления и действий.

Афоризм древних греков и римлян

Способности, как и мускулы, растут при тренировке.

Отечественный геолог и географ В. А. Обручев (1863-1956)

Блок 1 . Мотивация (5 мин). Для развития любознательности учащихся в начале урока - опыт.

На демонстрационном столе стоят две глубоких тарелки, наполненные до краев водой. Учитель приглашает к доске двух помощников и предлагает поучаствовать в эксперименте. Дает в руки одному ученику теннисный шарик, другому - такой же резиновый. Задача: заставить шарики вращаться в воде как можно быстрее .

Что наблюдаем?

Какой шарик крутится в воде быстрее?

Как вы думаете, почему теннисный шарик крутится быстрее, чем резиновый?

Вывод, к которому приходим после всестороннего анализа задачи: теннисный шарик вращается быстрее, чем резиновый, т.к. его поверхность вызывает меньше трения с водой.

Трение - это взаимодействие, возникающее при соприкосновении одного тела с другим и препятствующее их относительному движению. А сила, характеризующая это взаимодействие, - сила трения. Сегодня на уроке мы с вами раскроем все секреты этого удивительного явления - трения. Готовы? Тогда за дело!

Блок 2. Содержательная часть (30 мин)

У детей на столах: катушка из-под ниток; петля из резинки; гладкая пуговица, две спички, клей . Учитель предлагает, пользуясь набором этих инструментов, создать движущуюся конструкцию.

Работа в группах (учитель контролирует процесс поисковой и коммуникативной деятельности), демонстрация того, что получилось и рассказ о том, как действовали:

Какие идеи рождались?

Почему остановились на этой?

Как ее воплощали?

С какими проблемами столкнулись?

Как их решали? Все ли удалось?

Как работалось в команде?

Образец возможной конструкции:

Рис. 1

1 - катушка из-под ниток;

2 - петля из резинки;

3 - гладкая пуговица;

4 - обломок спички, продетый в петлю (его лучше приклеить к катушке);

5 - спичка.

Все группы поработали изобретателями, результат работы творческой мысли - движущаяся конструкция. Цель достигнута. Не малую роль в этом сыграла слаженность команды, умение слушать друг друга, формулировать и аргументировать свое мнение и корректное отстаивание своей позиции. Но все вы отмечаете, что скорость вашей машинки не так высока, как хочется.

Для того чтобы понять, как сделать полученную конструкцию более быстроход-ной, надо разобраться с тем, что ей мешает двигаться так, как нам того хочется.

Поиск будем вести в 3 направлениях: причина трения, виды трения, факторы его определяющие. На классной доске открываются записи:

Причины трения: Виды трения: Трение зависит от:

Не сомневаюсь в том, что уже есть идеи. Есть желание изложить свою точку зрения, - с удовольствием послушаем.

Работаем в группах сменного состава по сценарию: идея → опыт → вывод.

Каждая группа получает оборудование для постановки опытов: деревянный брусок с крючком, грузы, динамометр, деревянная доска 50×10 см, доски такого же размера, обитые линолеумом, резиной, круглые карандаши. А на интерактивной доске - подсказки в виде картинок:

Рис. 2 Рис. 3 Рис. 4

Рис. 5 Рис. 6 Рис. 7

Найдите рисунки, на которых встречается трение. Объясните свою точку зрения.

Обратите внимание на рис. 3, 4, 5. Что между ними общего, и чем отличаются? (Общее - трение. Но при этом хоккеист - скользит, телега - катится, а пианино - стоит на месте).

В природе и технике встречаются три вида трения: покоя, скольжения, качения (+запись на доске). Попробуйте дать им определения. Найдите их на других рисунках.

Чем же обусловлено возникновение силы трения? Как вы считаете?

Положите брусок с грузом на деревянную доску. Прикрепите к нему динамометр и, подействовав с силой, параллельной доске, равномерно перемещайте груз. Запишите показания динамометра. Какую силу мы измерили? (силу тяги, равную силе трения скольжения).

Повторите опыт на линолеуме и резине. Сделайте выводы
(1) одна из причин трения - неровности соприкасающихся поверхностей, которые при движении цепляются друг за друга; 2) сила трения зависит от материала соприкасающихся поверхностей) → записи на доске.

Добавить груз на брусок. Повторить эксперимент. Сформулировать вывод. (Сила трения прямо пропорциональна силе нормального давления) → запись на доске.

Положите брусок с гирями на карандаши. Эксперимент. Вывод.

Ребята, а что вы знаете о смазке? Какова ее роль? На каких рисунках она присутствует?

В свое время великий итальянский художник и ученый Леонардо да Винчи, удивляя окружающих, проводил странные опыты: он таскал по полу веревку то во всю длину, то собирая ее кольцами. Он изучал: зависит ли сила трения скольжения от площади соприкасающихся тел?

Прежде, чем мы узнаем, к какому выводу пришел Леонардо да Винчи, давайте тоже попробуем ответить на этот вопрос. Но вот оказия: веревки у нас нет. Как быть? Можно ли обойтись подручными средствами? Находим выход из положения в бруске, у которого различны площади граней. Сравнив силу трения скольжения при трех положениях бруска, приходим к выводу, что сила трения скольжения во всех случаях оказалась одной и той же, т. е. она не зависит от площади соприкасающихся тел. А что же Леонардо? (зачитываю ответ). И вот она - радость познания!

А сейчас я предлагаю вам с целью самоанализа изученного материала заполнить 2 таблицы , составив по получившимся записям устный рассказ. В случае затруднений обращаться к 30 и 31 параграфам учебника .

Таблица 1

Изученное физическое явление

Таблица 2

Силы, с которыми я познакомился

Работаете сначала самостоятельно, затем в группах обсуждаются, корректируются, «шлифуются» записи.

Но тут оказывается, что одна проблема возникла у всех: формулы для расчета силы трения в учебнике нет.

Ребята, вы уже знаете, что сила трения скольжения зависит от веса тела и материала соприкасающихся поверхностей. Величину, характеризующую зависимость силы трения от материала соприкасающихся поверхностей, их качества обработки называют коэффициентом трения скольжения μ. Таким образом, формула для расчета силы трения скольжения: F тр = μmg.

Думаю, что сейчас вы готовы сделать свою конструкцию быстроходной, доведя до совершенства. Это и будет вашим домашним заданием. На следующем уроке - соревнование ваших «машин». Победителей ждут высокие оценки. А сейчас…

Блок 3. Психологическая разгрузка (5 мин)

Мальчики жеребьевкой делятся на две команды, соревнуясь в перетягивании каната. Девочки - болельщицы. Им же предстоит объяснить, в чем могла быть причина победы или проигрыша команды. С каким видом трения и где столкнулись в данном состязании? Выступало оно в роли помощника или помехи? Что бы вы могли предложить для увеличения трения подошв о пол? рук о канат?

Блок 4. Головоломка (10 мин)

Скажите, ребята, кто из вас любит ходить на лыжах? Мы с моим классом иногда проводим выходные за этим замечательным занятием! Правда, воспоминания о нашем первом походе вызывают у нас смешанные чувства, т.к. намучались мы изрядно: лыжи все время «стремились» катиться назад, неимоверных усилий стоило подняться по самому небольшому взъёму.

Как думаете, что с нами было не так? - Смазка! А почему? Казалось бы, скольжение на лыжах требует уменьшения трения и все. Нет, не все. При беге на лыжах (классическим стилем) проявляются два вида трения. Какие? Одно полезное, и его нужно увеличить, другое вредное, и его нужно уменьшить. Вот так, увеличить и уменьшить одновременно! Ясно, как трудно подобрать такую грань, чтобы, как говорится, «и овцы были целы, и волки сыты». Для каждой погоды она своя - эта трудноуловимая грань. Ошибешься - и лыжи будут либо плохо скользить, либо плохо держать при отталкивании (отдача) . По этому поводу у финнов есть пословица «Лыжи скользят по погоде».

В пословицах - кратких изречениях, поучениях - проявляются национальная история, мировоззрение, быт людей. Но ведь все это неразрывно связано с физикой. Сегодня я предлагаю вам несколько пословиц, имеющих отношение к нашей теме (распределяются по группам жеребьевкой). Ваша задача: прочитать пословицу и ответить на вопросы:

  1. Каков ее физический смысл?
  2. Верна ли пословица с точки зрения физики?
  3. В чем ее житейский смысл?

Пословицы:

Пошло дело как по маслу (русская).

Лыжи скользят по погоде (финская).

Из навощенной нити трудно плести сеть (корейская).

Угря в руках не удержишь (французская).

Не подмажешь - не поедешь (французская).

Арбузную корку обошел, а на кокосовой поскользнулся (вьетнамская).

Коси коса, пока роса; роса долой, и мы домой (русская) .

Блок 5. Интеллектуальная разминка (15 мин)

Сегодня вам, мои юные физики, я расскажу сказку «Репка» о силе трения покоя, механизме ее возникновения, величине и направлении . Слушайте внимательно, т. к. по окончании вам предстоит ответить на 10 вопросов проще «пареной репы».

Итак, слушайте.

Посадил дед репку. Выросла репка большая-пребольшая, тяжелая-претяжелая, разрослась она во все стороны, грунт потеснила. Потому-то очень плотный контакт у ее клубня с почвой получился, во все мельчайшие трещины и выступы земля проникла. Пошел дед репку рвать. Тянет-потянет - вытянуть не может. Силы ему не хватает: упирается репка, неровностями и выступами за землю цепляется, своему движению противится. Местами зазор между репкой и участками почвы порядка радиуса действия молекулярных сил оказывается. Там слипание частичек грунта с репкой происходит, перемещению репки относительно земли оно препятствует.

Позвал дед бабку. Бабка за дедку, дедка за репку, тянут-потянут- вытянуть не могут: крепко утолщено-округленный корень в грунте держится. Сила тяжести его к земле прижимает. Нет, и вдвоем им не справиться.

Позвала бабка внучку. Внучка за бабку, бабка за дедку, дедка за репку, тянут-потянут - вытянуть не могут: все еще их общая сила тяги меньше той предельной силы, которая по поверхности соприкосновения репы с землей возникает. Силой трения покоя она называется. Вызвана внешней силой, но всегда против внешней силы и направлена. Неоднозначна эта сила - многолика. В широких пределах меняться может: от нуля до определенного максимального значения... Видно, еше не наступило это максимальное значение.

Позвала внучка Жучку. Жучка четырьмя лапами в землю уперлась. Между лапами и землей тоже сила трения покоя возникает. Помогает эта сила Жучке так же, как деду, бабке и внучке. Не будь этой силы, не смогли бы они упереться, по земле скользили бы, проскальзывали. Жучка за внучку, внучка за бабку, бабка за дедку, дедка за репку, тянут-потянут - вытянуть не могут. А на самом деле на микроны уже сдвинулась репка. Величина этих микро перемещений пропорциональна приложенной силе и от свойств самого грунта зависит. А слипание репки с землей и упругие деформации сдвига почвы и микро выступов самой репки при попытке ее вытянуть к росту силы упругости почвы приводят. А эта возникшая сила упругости почвы, по существу, и есть сила трения покоя. Не дает она никак вытянуть репку.

Позвала Жучка кошку. Кошка за Жучку, Жучка за внучку, внучка за бабку, бабка за дедку, тянут-потянут - вытянуть не могут: на самую малость, но все же меньше внешняя сила оказалась, чем максимально возможное значение силы трения покоя.

Позвала кошка мышку. Мышка за кошку, кошка за Жучку, Жучка за внучку, внучка за бабку, бабка за дедку, тянут-потянут - вытащили репку.

Только не подумайте, что маленькая мышка сильнее всех оказалась! Сколько тех сил у маленькой мышки! Но ее маленькая сила к общей силе тяги добавилась, и теперь результирующая сила даже превысила несколько максимальное значение величины силы трения покоя: больше силы трения скольжения стала. Возникли необратимые относительные перемещения. «Живая цепочка» - от деда до мышки - репку вытянула, а сама... упала! Больше приложенная сила, чем сила трения скольжения репки о грунт оказалась. Вот в сторону большей силы все и упали. Но это... уже другая сказка.

А теперь обещанные вопросы, проще «пареной репы»:

Блок 6 . Содержательная часть (15 мин)

Еще немного и о силе трения вы будете знать все.

Самостоятельная работа с учебником: изучить § 32 , структурировать текст (схема, таблица и пр.), обсудить в группе и наиболее удачный вариант представить всему классу, защитив его. Оцениваться работа будет по следующим критериям: интересная форма представления, компетентность защитника (четкое, понятное изъяснение, умение заинтересовать аудиторию, аргументированно ответить на заданные вопросы, если они возникнут), поддержка группы. В представлении результата деятельности должны прозвучать ответы на три вопроса: «Для чего делаю?», «Что делаю?» и «Как делаю?»

Блок 7 . Компьютерная интеллектуальная поддержка (10 мин)

Видеофрагмент мультфильма «Бременские музыканты» (Едут, поют «Ничего на свете лучше нету, чем бродить друзьям по белу свету»).

Рис. 8 Рис. 9

Найти все, что имеет отношение к нашей теме, аргументировать свой выбор. Но представить это надо «глазами» физика. Один начинает рассказ, эстафету принимает второй, затем третий и т. д. В случае необходимости, мультфильм повторяем, останавливаясь по просьбе отвечающего.

Блок 8. Резюме (5 мин)

«Сделай свою «фотографию» урока или работы»

Представьте, что каждый из вас фотограф, и вам надо сделать несколько снимков «стоп-кадров» с урока или того дела, которым вы только что занимались. Снимок может быть цветной или черно-белый. Цветной стоп-кадр отражает что-то понравившееся, доставившее вам радость от увиденного, услышанного, выполненного, сконструированного и пр. Черно-белый «стоп-кадр» должен показать то, что вам не понравилось, не удалось, огорчило.

Каждый изображает, как он делает свой снимок: держит в руках фотоаппарат, спускает затвор и громко комментирует кадр, поясняя, почему что-то понравилось или не понравилось. Затем фотоаппарат нужно передать другому учащемуся .

Последним несколько «стоп-кадров» делает учитель.

  1. Зиновкина М. М., Утёмов В. В. Структура креативного урока по развитию творческой личности учащихся в педагогической системе НФТМ-ТРИЗ // Социально-антропологические проблемы информационного общества. Выпуск 1. - Концепт. - 2013. - ART 64054. - URL: http://e-koncept.ru/teleconf/64054.html
  2. Федеральный государственный образовательный стандарт основного общего образования. - URL: http://минобрнауки.рф]
  3. Опыт «Трение» - Уроки волшебства. - URL: http://lmagic.info/friction.html
  4. Балашов М. М. О природе: Кн. для учащихся 7 кл. - М.: Просвещение. 1991. -64 с.: ил.
  5. Преподавание физики, развивающее ученика. - Кн. 2. - Развитие мышления: общие представления, обучение мыслительным операциям / сост. и под ред. Э. М. Браверман. Пособие для учителей и методистов. - М.: Ассоциация учителей физики. 2005. - 272 с.; ил. - (Обучение, ориентированное на личность.)
  6. Класс!ная физика. - URL: http://class-fizika.narod.ru/
  7. Перышкин А. В. Физика. 7 кл.: учеб. для общеобразоват. учреждений. - 8-е изд., стереотип. - М.: Дрофа, 2004. - 192 с.: ил.
  8. Тихомирова С. А. Физика в пословицах, загадках и сказках. - М.: Школьная Пресса, 2002. - 128 с. - (Библиотека журнала «Физика в школе»; Вып. 22)
  9. Урок физики в современной школе: Творч. поиск учителей: Кн. для учителя / сост. Э. М. Браверман; под ред. В. Г. Разумовского. - М.: Просвещение,1993. - 288 с
  10. Преподавание физики, развивающее ученика. Кн. 1. Подходы, компоненты, уроки, задания / сост. и под ред. Э.М. Браверман: Пособие для учителей и методистов. - М.: Ассоциация учителей физики. 2003. - 400 с.; ил. - (Обучение, ориентированное на личность.)

Сила трения.

Урок-эксперимент. 7 класс. Базовый уровень.

Учитель: Леснова Е.Ю.

Цель : ознакомить учащихся с явлением трения. Экспериментально установить от чего зависит эта сила. Продолжить формирование умений пользоваться приборами, анализировать и сравнивать результаты опытов.

Оборудование: динамометр, доска – с одной стороны гладкая, с другой шероховатая, брусок деревянный с крючками, набор грузов, кювета с водой, тележка на колесах.

Класс разбивается на 4 группы. Каждой группе выдаются карточки с заданием. На выполнение каждого задания отводится 2 минуты. Если группа не справляется с заданием, учитель предлагает подсказки. Выводы по эксперименту записываются в тетрадь.

План урока

Изучение нового материала, систематизация изученного.

    Рефлексия.

домашнее задание

Сообщение учителя

Заполнение таблицы

Проведение опытов, объяснение их результатов.

Запись выводов в тетради.

Ответы на вопросы. Запись домашнего задания.

Задания группам.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с двумя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в сосуде. Сравните показания динамометра. Сделайте вывод.

Ход урока.

1 .Мотивация . Любому открытию сопутствует опыт, талант исследователя и даже случай. Сегодня на уроке также попытаемся совершить небольшие, но самостоятельные открытия. Работаем в группах. Правила записаны на доске.

2 . Изучение нового материала . учитель толкает деревянный брусок по деревянной доске.

Что произошло со скоростью бруска? Почему меняется скорость бруска? Под действием какой силы тело остановилось? Это сила трения и её мы будем изучать на уроке.

Продолжим заполнение таблицы, пользуясь параграфом №24. на работу отвожу 8минут.

направление

Способ измерения

Графическое изображение

Причины появления силы

Проверяется заполнение таблицы-3мин.

Учитель объясняет, что есть различные виды трения: сила трения скольжения, качения, сухого трения по поверхности, жидкого трения.

Работа в группах по заданиям.

После обсуждения итоги опытов обсуждаются и записываются в тетрадь.

3.Рефлексия.

А сейчас каждый выскажет свое отношение к уроку, начиная свое высказывание со слов:

1. самые важные выводы о силе трения – это

2. а вы знаете, что сегодня на уроке я научился….

3. больше всего мне сегодня запомнилось….

4. самым интересным было …

Если человек своим трудолюбием достигает истины в чем-либо, то это и есть его открытие.

Д/З: прочесть записи в тетради, привести примеры полезного и вредного трения.

Задание 1.

Задание 2.

Задание 3.

Задание 4.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Подсказка №1 (К заданию 1)

Подсказка №2 (К заданию 1)

Подсказка №1 (К заданию 2)

Подсказка №2 (К заданию 2)

Подсказка №1 (К заданию 3)

Подсказка №2 (К заданию 3)

Подсказка №1 (К заданию 4)

Измерьте модуль силы трения скольжения при разных площадях соприкасающихся поверхностей.

Подсказка №2 (К заданию 4)

1.С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности доски, чтобы он соприкасался с доской большей площадью.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности доски, чтобы он соприкасался с доской меньшей площадью.

КАК РАБОТАТЬ В ГРУППЕ

    своих сил.

    Выступать от имени группы почетно.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 1)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с тремя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в кювете. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 1)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с тремя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в кювете. Сравните показания динамометра. Сделайте вывод.

направление

Способ измерения

Графическое изображение

Причины появления силы

КАЧЕНИЕ И СКОЛЬЖЕНИЕ

Поставь книгу наклонно и положи на нее карандаш. Сползет или не сползет?
Это зависит от того, как положить. Если положить вдоль уклона, карандаш даже при большом наклоне сползать не будет. А если поперек?
Ого, как покатился! Особенно если он круглый, а не шестигранный.

Ты можешь сказать: подумаешь, тоже мне научный опыт! Что же в нем интересного?
А интересно в этом опыте то, что, когда карандаш катится, трение оказывается гораздо меньше, чем когда он ползет. Катить легче, чем волочить. Или, как говорят физики, трение качения меньше, чем трение скольжения.

Именно поэтому люди изобрели колеса. В глубокой древности колес не знали и даже летом грузы возили на санях. На стене одного древнего храма в Египте высечена картина: огромную каменную статую везут по земле на санях.

Катки, а потом и колеса появились уже несколько тысяч лет назад, трение скольжения было заменено более выгодным трением качения.

Современная техника сделала следующий важный шаг: появились подшипники, которые бывают скользящими, шариковыми и роликовыми.

Чтобы толстую книгу передвинуть по столу одним пальцем, надо приложить некоторое усилие.

А если под книгу подложить два круглых карандаша, которые будут в данном случае роликовыми подшипниками, книга легко передвинется от слабого толчка мизинцем.

Так как трение качения значительно меньше трения скольжения, в технике скользящие подшипники стараются заменить шариковыми или роликовыми. Даже в обычном взрослом велосипеде шариковые подшипники есть во втулках колес, в рулевой колонке, на оси шатунов, на осях педалей.
Автомобили, мотоциклы, тракторы, железнодорожные вагоны —все эти машины катятся на шариковых и роликовых подшипниках.

ТРЕНИЕ ПОКОЯ

Положите на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимайте верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшите наклон книги и закрепите ее в таком положении, подложив под нее что-нибудь.

Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения — сила трения покоя. Но стоит эту силу чуть ослабить — а для этого достаточно щелкнуть пальцем по книге,— и карандаш поползет вниз, пока не упадет на стол. Тот же опыт можно проделать, например, с пеналом, спичечным коробком, ластиком и т. п.

Сила трения движения (при других одинаковых условиях) обычно меньше силы трения покоя. В данном случае она оказалась не в состоянии удержать карандаш на наклонной плоскости.
Кстати, подумайте, почему гвоздь легче вытащить из доски, если вращать его вокруг оси?

АКРОБАТ ИДЕТ КОЛЕСОМ

Прежде чем кончить разговор о трении, сделаем еще одну забавную игрушку.
Из плотной бумаги вырежь фигурку акробата. Насади ее на перо, вставленное на остро заточенный круглый карандаш. Вдень теперь карандаш с акробатом наискось в кольцо ножниц. Держа ножницы горизонтально, води их осторожно по кругу.

Ах, как пошел колесом наш акробат!
Он ведь участвует в двух движениях сразу. Во-первых, конец ручки с надетым на перо акробатом описывает большие круги. А во-вторых, ручка не скользит по кольцу ножниц, а обкатывается по нему. И ручка вместе с акробатом вертится вокруг своей оси. От соединения этих двух движений и получаются такие замечательные колеса. Живому акробату едва ли удастся их повторить!

Ты спросишь, где же здесь трение?
Да в кольце ножниц. Если бы его не было, ручка сразу провалилась бы вниз, она бы не удержалась даже в наклонном положении. И еще: если бы между кольцом и ручкой не было трения, ручка бы не обкатывалась по кольцу и акробат не кувыркался бы так красиво.

ТОРМОЗ В ЯЙЦЕ

Опыт 1

Подвесьте сырое яйцо на тонком шнурке. Чтобы шнурок не соскальзывал с расположенного вертикально яйца, используйте лейкопластырь, наклеив его маленькие кусочки на те места, где находится шнурок.

Рядом подвесьте яйцо, сваренное вкрутую. Закрутите каждый шнурок с яйцом в одну сторону на одинаковое количество оборотов. Когда шнурки будут закручены, одновременно отпустите яйца. Вы увидите, что сваренное яйцо ведет себя иначе, чем сырое: оно вращается значительно быстрее.

В сыром яйце его белок и желток стараются сохранить неподвижное состояние (в этом проявляется их инерция) и своим трением о скорлупу тормозят ее вращение

В вареном же яйце белок и желток уже не жидкие вещества и представляют вместе со скорлупой как бы одно целое, поэтому торможения не происходит и яйцо вращается быстрее.

Этот опыт можно проделать и без подвешивания яиц: достаточно закрутить их пальцами на большой тарелке.

Опыт 2

Еще интереснее проделать такой опыт.
Возьмите две одинаковые кастрюльки с двумя ушками (можно и игрушечные). Соедините ушки веревкой или тонким проводом, а к середине привяжите еще одну веревку, так чтобы кастрюля была в равновесии. Подвесьте обе кастрюли на этих веревках и налейте в одну из них воды, а в другую — столько же по объему крупы. Теперь закрутите веревки на одинаковое число оборотов и отпустите. Результат будет аналогичен опыту с яйцами.

Когда кастрюльки раскрутились, попробуйте быстро остановить их, а потом опять отпустить. Окажется, что кастрюлька с водой продолжает вращаться. Ну как, сможете объяснить это явление?

Источники: Ф. Рабиза "Опыты без приборов"; "Забавная физика" Л. Гальперштейн

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.



Рассказать друзьям