Японский поезд на магнитной подушке. Маглев, или поезд на магнитных подушках – транспорт нового уровня

💖 Нравится? Поделись с друзьями ссылкой

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Несомненно, Шанхайский Маглев - одна из достопримечательностей Шанхая, да и всего Китая. Это первая в мире коммерческая магнитная железная дорога была введена в эксплуатацию в январе 20о4 года.

Сейчас эта 30-километровая линия соединяет со станцией метро Лун"ян Лу в районе Шанхая. Это расстояние на поезде на магнитной подушке преодолевается меньше, чем за 8 минут. Для сравнения, если ехать на , то понадобится 40 минут.

На таком поезде нужно проехать как минимум два раза - один раз наблюдая за указателем скорости, когда он достигнет максимума, а другой раз - любуясь видом из окна 🙂

Шанхайский Маглев построен по немецкой технологии. Активные разработки в этой области ведутся в основном в Японии и Германии.

Магнитная подушка. Как это работает?

Слово Маглев - сокращенно от магнитная левитация (magnetig levitation, англ.), то есть поезд как бы левитирует над полотном дороги под действием мощного электромагнитного поля.

К низу каждого вагона к стальному обхвату (4) прикреплены управляемые электронным способом электромагниты (1). Также магниты расположены в нижней части специального рельса (2). При взаимодействии магнитов поезд зависает над рельсом в одном сантиметре. Есть также магниты, отвечающие за боковое выравнивание (3). Обмотка, уложенная вдоль пути, создает магнитное поле, приводящее поезд в движение.

Поезд едет без машиниста. Управление осуществляется из центра управления с помощью компьютеров. Электрический ток подается из центра управления только на тот участок, по которому движется в данный момент поезд. Для торможения магнитное поле меняет свой вектор.

Достоинства и недостатки

"Если кто-нибудь из вас решит построить башню, то разве он не сядет сначала и не подсчитает все затраты, чтобы посмотреть, хватит ли ему средств, чтобы закончить её?" ( , Луки 14 глава 28 стих)

В этих словах заключена одна из причин, почему таких поездов не понаделали всюду.

Дорого обходится строительство и обслуживание специальной колеи. Например, строительство Шанхайского Маглева было дополнительно осложнено заболоченной местностью. Каждая опора трассы уложена на специальную бетонную подушку, упирающуюся в скальное основание. Местами такая подушка достигает 85 метров толщины! В итоге эти 30 км магнитной дороги обошлись в 10 млрд юаней.

К тому же по этой дороге уже нельзя пустить другой транспорт. Это отличает его от путей, построенных для скоростных поездов - по ним все равно могут ехать и обычные .

Теперь о приятном. Главным плюсом Маглева является, конечно, же скорость. За короткое время после старта поезд разгоняется до 430 км в час.

Сравнительно низкое потребление электроэнергии - в разы меньше, чем у автомобиля или самолета. Соответственно меньше вреда окружающей среде.

Так как сильно уменьшено трение деталей, то и затраты на эксплуатацию такого поезда меньше.

Проведенные испытания показали, что магнитное поле в поезде даже слабее, чем в обычных поездах. Значит, мощные магниты не опасны для пассажиров, в том числе с электронным стимулятором сердца.

На случай потери электропитания в поезде установлены батареи, на которых срабатывают специальные тормоза. Они создают магнитное поле с обратным вектором, и скорость поезда снижается до 10 км в час, и в конце концов поезд останавливается и опускается на рельсы.

Будущее Шанхайского Маглева

Сейчас длина маглев-пути равна 30 км. Известно о планах продлить линию до другого аэропорта Шанхая - до Хунцяо, расположенном на западе от . И дальше продлить дорогу на юго-запад до Ханчжоу. В итоге длина пути составила бы 175 км. Но пока проект заморожен до 2014 года. С 2010 года Шанхай и Ханчжоу соединила высокоскоростная железная дорога. Будут ли реализованы планы по продлению Маглева - покажет время.

Первый поезд на магнитной подушке перевез группу пассажиров в рамках проходившей в Германии Международной транспортной выставки IVA 1979 года. Но мало кто знает, что в том же году свои первые метры по испытательной трассе проехал другой маглев — советский, модель ТП-01. Особо удивительно, что советские маглевы сохранились до наших дней, — они пылятся на задворках истории более 30 лет.

Опыты с транспортом, работающим по принципу магнитной левитации, начались еще до войны. В разные годы и в разных странах появлялись действующие прототипы левитирующих поездов. В 1979-м немцы представили систему, которая за три месяца работы перевезла более 50 000 пассажиров, а в 1984-м в международном аэропорту города Бирмингем (Великобритания) появилась первая в истории постоянная линия для поездов на магнитной подушке. Изначальная длина трассы составляла 600 м, а высота левитации не превышала 15 мм. Система вполне успешно эксплуатировалась на протяжении 11 лет, но затем участились технические отказы из-за состарившегося оборудования. А поскольку система была уникальной, практически любую запчасть приходилось изготовлять по индивидуальному заказу, и было принято решение закрыть линию, приносившую сплошные убытки.


1986 год, ТП-05 на полигоне в Раменском. 800-метровый участок не позволял разогнаться до крейсерских скоростей, но первичные «заезды» этого и не требовали. Вагон, построенный в крайне сжатые сроки, обошёлся почти без «детских болезней», и это было хорошим результатом.

Помимо британцев, серийные магнитные поезда вполне успешно запустили все в той же Германии — компания Transrapid эксплуатировала подобную систему длиной 31,5 км в районе Эмсланд между городами Дерпен и Латен. История эмсландского маглева, правда, закончилась трагически: в 2006 году по вине техников произошла серьезная авария, в которой погибло 23 человека, и линию законсервировали.

В Японии сегодня эксплуатируется две системы магнитной левитации. Первая (для городских перевозок) использует систему электромагнитного подвеса для скоростей до 100 км/ч. Вторая, более известная, SCMaglev, предназначена для скоростей более 400 км/ч и основана на сверхпроводящих магнитах. В рамках этой программы построено несколько линий и установлен мировой рекорд скорости для железнодорожного транспортного средства, 581 км/ч. Буквально два года назад было представлено новое поколение японских поездов на магнитном подвесе — L0 Series Shinkansen. Кроме того, система, аналогичная немецкому «Трансрапиду», работает в Китае, в Шанхае; в ней также используются сверхпроводящие магниты.


Салон ТП-05 имел два ряда сидений и центральный проход. Вагон широкий и при этом на удивление низкий — редактор ростом 184 см практически касался головой потолка. В кабине водителя стоять было невозможно.

А в 1975 году началась разработка первого советского маглева. Сегодня о нем практически забыли, но это очень важная страница технической истории нашей страны.

Поезд будущего

Он стоит перед нами — большой, футуристического дизайна, похожий скорее на космический корабль из научно-фантастического фильма, нежели на транспортное средство. Обтекаемый алюминиевый кузов, сдвижная дверь, стилизованная надпись «ТП-05» на борту. Экспериментальный вагон на магнитном подвесе стоит на полигоне неподалеку от Раменского уже 25 лет, целлофан покрыт густым слоем пыли, под ним — удивительная машина, которую чудом не разрезали на металл по доброй русской традиции. Но нет, он сохранился, и сохранился ТП-04, его предшественник, предназначенный для испытаний отдельных узлов.


Экспериментальный вагон в цеху — уже в новой раскраске. Его перекрашивали несколько раз, а для съёмок в фантастическом короткометражном фильме сделали на борту большую надпись Fire-ball.

Разработка маглева уходит корнями в 1975 год, когда при Миннефтегазстрое СССР появилось производственное объединение «Союзтранспрогресс». Несколькими годами позже стартовала государственная программа «Высокоскоростной экологически чистый транспорт», в рамках которой и началась работа над поездом на магнитной подушке. С финансированием было очень неплохо, под проект построили специальный цех и полигон института ВНИИПИтранспрогресс с 120-метровым участком дороги в подмосковном Раменском. А в 1979 году первый вагон на магнитной подушке ТП-01 успешно прошел испытательную дистанцию своим ходом — правда, еще на временном 36-метровом участке завода «Газстроймашина», элементы которого позже «переехали» в Раменское. Обратите внимание — одновременно с немцами и раньше многих других разработчиков! В принципе, СССР имел шансы стать одной из первых стран, развивающих магнитный транспорт, — работой занимались настоящие энтузиасты своего дела во главе с академиком Юрием Соколовым.


Магнитные модули (серые) на рельсе (оранжевом). Прямоугольные бруски по центру фотографии — это как раз датчики зазора, отслеживающие неровности поверхности. Электронику с ТП-05 сняли, но магнитное оборудование осталось, и, в принципе, вагон снова можно запустить.

Экспедицию «Популярной механики» возглавил не кто иной, как Андрей Александрович Галенко, генеральный директор ОАО инженерно-научного центра «ТЭМП». «ТЭМП» — это та самая организация, экс-ВНИИПИтранспрогресс, отделение канувшего в Лету «Союзтранспрогресса», а Андрей Александрович работал над системой с самого начала, и вряд ли кто мог бы рассказать о ней лучше него. ТП-05 стоит под целлофаном, и первым делом фотограф говорит: нет, нет, мы не сможем это сфотографировать, тут же ничего не видно. Но затем мы стягиваем целлофан — и советский маглев впервые за долгие годы предстает перед нами, не инженерами и не сотрудниками полигона, во всей красе.


Зачем нужен маглев

Разработку транспортных систем, работающих на принципе магнитной левитации, можно разделить на три направления. Первое — это машины с расчетной скоростью до 100 км/ч; в таком случае наиболее оптимальной является схема с левитационными электромагнитами. Второе — это пригородный транспорт со скоростями 100−400 км/ч; здесь целесообразнее всего использовать полноценный электромагнитный подвес с системами боковой стабилизации. И наконец, самая «модная», если так можно выразиться, тенденция — поезда дальнего сообщения, способные разгоняться до 500 км/ч и выше. В этом случае подвеска должна быть электродинамической, на сверхпроводящих магнитах.


ТП-01 относился к первому направлению и испытывался на полигоне вплоть до середины 1980 года. Масса его составляла 12 т, длина — 9 м, а вмещал он 20 человек; зазор подвеса при этом был минимален — всего 10 мм. За ТП-01 последовали новые градации испытательных машин — ТП-02 и ТП-03, путь удлинили до 850 м, потом появился вагон-лаборатория ТП-04, предназначенный для исследования работы линейного тягового электропривода. Будущее советских маглевов казалось безоблачным, тем более что в мире, помимо Раменского, существовало всего два подобных полигона — в Германии и Японии.


Раньше ТП-05 был симметричным и мог двигаться как вперёд, так и назад; пульты управления и лобовые стёкла были с обеих его сторон. Сегодня пульт сохранился только со стороны цеха — второй демонтировали за ненадобностью.

Принцип работы левитирующего поезда относительно прост. Состав не касается рельса, находясь в состоянии парения, — работает взаимное притяжение или отталкивание магнитов. Проще говоря, вагоны висят над плоскостью пути благодаря вертикально направленным силам магнитной левитации, а от боковых кренов удерживаются с помощью аналогичных сил, направленных горизонтально. При отсутствии трения о рельс единственной «преградой» для движения становится аэродинамическое сопротивление — многотонный вагон теоретически может сдвинуть с места даже ребенок. В движение поезд приводится линейным асинхронным двигателем, аналогичным тому, что работает, например, на московском монорельсе (к слову, этот двигатель разработан как раз ОАО ИНЦ «ТЭМП»). Подобный двигатель имеет две части — первичная (индуктор) установлена под вагоном, вторичная (реактивная шина) — на путях. Электромагнитное поле, создаваемое индуктором, взаимодействует с шиной, двигая поезд вперед.

К преимуществам маглева в первую очередь относится отсутствие иного сопротивления, кроме аэродинамического. Кроме того, минимален износ оборудования из-за незначительного количества подвижных элементов системы в сравнении с классическими поездами. К недостаткам — сложность и дороговизна путей. Например, одной из проблем является безопасность: маглев нужно «поднимать» на эстакаду, а если есть эстакада, значит, необходимо продумать возможность эвакуации пассажиров в случае экстренной ситуации. Впрочем, вагон ТП-05 планировался к эксплуатации на скоростях до 100 км/ч и имел относительно недорогую и технологичную путевую структуру.


1980-е. Инженер ВНИИПИ-транспрогресс работает за ЭВМ. Оборудование цеха на то время было самым современным — финансирование программы «Высокоскоростной экологически чистый транспорт» осуществлялось без серьёзных сбоев даже в перестроечные времена.

Все с нуля

Разрабатывая серию ТП, инженеры всё, по сути, делали «с нуля». Выбирали параметры взаимодействия магнитов вагона и пути, затем взялись за электромагнитную подвеску — работали над оптимизацией магнитных потоков, динамикой движения и т. д. Основным достижением разработчиков можно назвать созданные ими так называемые магнитные лыжи, способные компенсировать неровности пути и обеспечить комфортную динамику движения вагона с пассажирами. Адаптация к неровностям реализовывалась с помощью небольших по размеру электромагнитов, связанных шарнирами в нечто подобное цепям. Схема была сложной, но значительно более надежной и работоспособной, чем при жестко закрепленных магнитах. Контроль за системой осуществлялся благодаря датчикам зазора, которые отслеживали неровности пути и давали команды силовому преобразователю, уменьшавшему или увеличивающему ток в конкретном электромагните, а значит, и подъемную силу.


ТП-01, первый советский маглев, 1979 год. Здесь вагон стоит ещё не в Раменском, а на коротком, 36-метровом участке пути, построенном на полигоне завода «Газстроймашина». В том же году первый подобный вагон продемонстрировали немцы — советские инженеры шли в ногу со временем.

Именно эта схема и была опробована на ТП-05 — единственном построенном в рамках программы вагоне «второго направления», с электромагнитным подвесом. Работу над вагоном вели очень быстро — его алюминиевый корпус, например, сделали буквально за три месяца. Первые испытания ТП-05 прошли в 1986 году. Он весил 18 т, вмещал 18 человек, остальная часть вагона была занята испытательным оборудованием. Предполагалось, что первая дорога с использованием таких вагонов на практике будет построена в Армении (из Еревана в Абовян, 16 км). Скорость должны были довести до 180 км/ч, вместимость — до 64 человек на вагон. Но вторая половина 1980-х внесла свои коррективы в радужное будущее советского маглева. В Британии к тому времени уже запустили первую постоянную систему на магнитной подушке, мы могли бы догнать англичан, если бы не политические перипетии. Другой причиной свертывания проекта стало землетрясение в Армении, приведшее к резкому сокращению финансирования.


Проект В250 — скоростной маглев «Москва — Шереметьево». Аэродинамика была разработана в ОКБ Яковлева, причём были изготовлены полноразмерные макеты сегмента с креслами и кабины. Расчётная скорость — 250 км/ч — была отражена в индексе проекта. К сожалению, в 1993 году амбициозная идея разбилась об отсутствие финансирования.

Предок «Аэроэкспресса»

Все работы по серии ТП были свернуты в конце 1980-х, а с 1990 года ТП-05, успевший к тому времени сняться в научно-фантастической короткометражке «С роботами не шутят», был поставлен на вечный прикол под целлофаном в том самом цеху, где его построили. Мы стали первыми журналистами за четверть века, кто увидел эту машину «вживую». Внутри сохранилось практически все — от пульта управления до обивки кресел. Реставрация ТП-05 не так сложна, как могла бы быть — он стоял под крышей, в хороших условиях и заслуживает место в музее транспорта.


В начале 1990-х ИНЦ «ТЭМП» продолжил тему маглева, теперь уже по заказу правительства Москвы. Это была идея «Аэроэкспресса», скоростного поезда на магнитной подушке для доставки жителей столицы прямо в аэропорт Шереметьево. Проект получил название В250. Опытный сегмент поезда показали на выставке в Милане, после чего в проекте появились иностранные инвесторы и инженеры; советские специалисты ездили в Германию для изучения заграничных наработок. Но в 1993-м из-за финансового кризиса проект был свернут. 64-местные вагоны для Шереметьево остались только на бумаге. Впрочем, некоторые элементы системы были созданы в натурных образцах — узлы подвески и ходовой части, приборы бортовой системы электроснабжения, начались даже испытания отдельных блоков.


Самое интересное, что наработки для маглевов в России есть. ОАО ИНЦ «ТЭМП» работает, реализуются различные проекты для мирной и оборонной отраслей, есть испытательный участок, есть опыт работы с подобными системами. Несколько лет назад благодаря инициативе ОАО «РЖД» разговоры о маглеве снова перешли в стадию проектных разработок — правда, продолжение работ поручено уже другим организациям. К чему это приведет, покажет время.

За помощь в подготовке материала редакция выражает благодарность генеральному директору ИТЦ «Транспорт электромагнитный пассажирский» А.А. Галенко.

15/06/2016

Они будут парить над рельсом, используя изобретенную петербургскими учеными технологию RusMaglev. Поначалу составы сделают грузовыми. В Минтрансе 13 мая состоялось совещание, на котором был представлен проект.


У же подписан договор с инвестором о его реализации. Начаты исследования по другому проекту, использующему принцип Hyperloop - полета поездов в вакуумной трубе. Эти поезда смогут передвигаться быстрее самолетов. Зачем нам все это и когда поезда, наконец, полетят? - узнавал «Город 812».

Один вагон уже взлетел

В конце мая в Петербурге состоялась международная конференция, посвященная созданию и развитию в мире нового, пятого, вида транспорта - маглева. Маглевы, или магнитные поезда, используют принцип магнитной левитации и парят над рельсом, не касаясь земли. Это позволяет развивать скорости, сравнимые с самолетными, и при этом экономить энергию. Такие поезда уже есть в Японии, Китае и Южной Корее. Многие страны начали развивать маглевы.
Петербургские ученые изобрели собственную магнитолевитационную технологию - RusMaglev. На ее основе создан первый в мире проект грузовой магнитолевитационной трассы между Петербургом и Москвой.

Составы, состоящие из контейнеров, будут парить над рельсом, удерживаемые в воздухе магнитной левитацией. Опытный образец летающего вагона массой 32 тонны создан в Петербургском госуниверситете путей сообщения (ПГУПС). Вагон был подвешен в воздухе на высоте 2,5 см от магнитного основания примерно год назад и с тех пор продолжает парить.

За это время левитационный зазор не уменьшился ни на миллиметр! - говорит глава Центра инновационного развития пассажирских перевозок ПГУПС, экс-министр путей сообщения РФ Анатолий Зайцев.

По его словам, для поддержания вагона в воздухе не требуется никаких внешних источников энергии. Он висит сам по себе, удерживаемый только магнитным полем. Такие вагоны, весом до 80 тонн каждый, смогут передвигаться со скоростью 400 км/час и более. Расход электроэнергии у них в два раза ниже, чем, например, у поездов ВСМ, так как нет соприкосновения с поверхностью и не нужно преодолевать силы трения. Магнитная магистраль длиной в 720 км протянется из порта Усть-Луга (Ленобласть) в логистический центр «Белый Раст» в Подмосковье.

Трасса пройдет по эстакаде на средней высоте в 5,5 метра. Строительство будет вестись в несколько этапов. Сначала в районе Гатчины (другой вариант - Шушары) возведут опытный участок пути, на котором отработают новую технологию. Затем путь продлят до грузового порта Усть-Луга, далее возможен заход в порт Бронка. Конечная точка - грузовые терминалы Москвы. Стоимость проекта - 22 миллиарда долларов. Уже подписан договор с инвестором - международной финансовой корпорацией Gordon Atlantic Development Corp, готовой привлечь финансирование для строительства первого русского маглева.

Магистраль должна пройти по территории пяти регионов - Петербурга, Ленинградской, Новгородской, Тверской областей и Москвы. Проблем с собственниками земли для прокладки трассы возникнуть не должно. По словам Зайцева, для возведения эстакады требуются лишь небольшие участки под опоры. В любом случае трасса легко может сделать крюк, чтобы обойти препятствия или подняться над ними.

В мае проект был представлен в Министерстве транспорта РФ. Ученые не просят ни копейки денег из бюджета, но им нужна поддержка - моральная.

Такие масштабные инфраструктурные проекты всегда должны быть под приглядом государственного ока, - говорит экс-министр путей сообщения, инициатор проекта RusMaglev профессор Анатолий Зайцев.

По его словам, правительство должно дать разрешение на создание маглева, а также рекомендовать региональным чиновникам оказывать поддержку проекту. Иначе в российских реалиях он может столкнуться с непредсказуемыми трудностями.

Петербургский маглев должен стать первым звеном в магнитолевитационной транспортной системе страны. Ученые из Уральского отделения РАН сделали анализ обоснования строительства маглева для севера России. Они предлагают открыть контейнерное магнитное сообщение по маршруту Ивдель (Свердловская область) - Индига (Ненецкий АО) протяженностью 1100 км. От Ивдели магнитная контейнерная магистраль может быть проложена на юг до границы с Китаем. По словам Анатолия Зайцева, перевозка одного миллиона контейнеров из Китая в Европу сегодня может принести прибыль, сравнимую с прибылью от продажи всех углеводородов России за год.

После обкатки на грузовых перевозках RusMaglev можно сделать и пассажирским, но при этом грузовые и пассажирские потоки нужно разделять. По расчетам уральских ученых, для перевозки людей по магнитолевитационной дороге выгоднее строить небольшие четырех-пятиместные пассажирские модули.

Русская петля

Министр транспорта Максим Соколов в рамках саммита Россия - АСЕАН заявил, что Россия готова к реализации собственных технологий сверхбыстрых пассажирских перевозок по аналогии с технологией Hyperloop. Так министр ответил на вызов Запада, где проект Hyperloop («Гиперпетля») стремительно набирает популярность.

Суть западного проекта в том, что поезда, или транспортные капсулы, движутся с помощью магнитной левитации в вакуумной трубе, развивая скорость до 1200 км/час. Идею предложил американец Элон Маск (основатель компаний SpaceX и Tesla Motors), после чего сразу несколько компаний взялись за ее воплощение, самая активная из которых - Hyperloop One.

В мае этого года в Неваде прошли первые тестовые испытания капсулы Hyperloop. Секрет популярности проекта - в его заявленной дешевизне и обещанной низкой стоимости билетов на проезд.

В России для изучения американской технологии Hyperloop создана совместная рабочая группа из специалистов РЖД и компании Hyperloop One. Однако пока, по словам российских экспертов, американцы представили лишь тележку, которая ездит по трубе с помощью обычного линейного двигателя.

Над проектом отечественного сверхбыстрого поезда сегодня трудятся специалисты из разных регионов страны. Ученые из Сибирского отделения РАН сделали предварительные расчеты для вакуумного поезда на основе магнитолевитационной, вакуумной и сверхпроводниковой технологий. По их оценке, диапазон скоростей локомотива в вакуумной трубе может составлять от 500 до 6500 км/час. Но пока нерешенными остаются проблемы волнового сопротивления, аэротермодинамики и другие.

Несложно заключить левитирующий вагон в трубу и откачать оттуда воздух - если уж говорить примитивно. Но кто-то должен вложить средства в такой проект, - объясняет он.

По мнению петербургских ученых, строительство вакуумной трубы может оказаться самым дорогим из всех рассматриваемых вариантов сверхбыстрых поездов. В настоящее время в ПГУПС ведутся работы по экономическому моделированию, чтобы понять, какой из проектов магнитолевитационного поезда выгоднее: вакуумный или эстакадный (проект Петербург - Москва эстакадный).

По словам президента Международного совета по транспортным системам Маглев (The International Maglevboard) профессора Йоханнеса Клюшписа, к проекту Hyperloop многие специалисты относятся с недоверием. Во-первых, сомнительна его экономическая перспектива, так как строительство обойдется намного дороже, чем заявлялось в начале. Во-вторых, велики риски для жизни и здоровья людей в случае разгерметизации трубы. В-третьих, пассажиры просто не захотят путешествовать таким странным способом.

Людям не понравится сидеть в капсуле в замкнутом пространстве, не имея возможности встать и выйти. Я бы не стал инвестировать в такой проект для пассажиров. Но он может быть успешен для грузовых перевозок, - полагает профессор Клюшпис.

Городской маглев

Сегодня лидерами по внедрению маглева являются Корея, Япония и Китай. По всему миру было запущено порядка десятка магнитолевитационных транспортных проектов, но успешны лишь три из них.

В Китае действует линия протяженностью 30 км, связывающая Шанхай и аэропорт. В Японии, в Нагое, была построена трасса длиной в 9 км к выставке Expo-2005. В Южной Корее в феврале 2016-го открылась магнитолевитационная дорога протяженностью 6 км - от аэропорта до базы отдыха Yongyoo-Mui. В Германии, США, Испании, Канаде, ОАЭ, России проекты строительства магнитолевитационных линий находятся на разных стадиях реализации.

По словам профессора Клюшписа, во многих странах маглев сталкивается с противодействием со стороны бизнеса, правительства и общества. Например, в Германии проект маглева провалился из-за давления со стороны железнодорожников, которые не хотели терять монополию на рынке.

В Японии расширение маглева тормозится из-за протестов граждан. Они боятся, что новая магистраль испортит экологию: создаст шум, вибрацию, электромагнитное и даже радиационное излучение (это устойчивый, ничем, как уверяют эксперты, не обоснованный страх японцев).

Корейцы протестуют против строительства трассы, так как опасаются, что это приведет к подорожанию земли и повышению арендных ставок вблизи новой дороги.

В России, по словам профессора Клюшписа, есть поддержка маглева со стороны руководства страны, и даже железнодорожники положительно относятся к проекту. Однако неофициально эксперты говорят, что РЖД готово поддерживать только грузовой маглев. А будущее пассажирского сообщения в РЖД однозначно связывают с высокоскоростными магистралями (ВСМ). При этом некоторые ученые называют технологию ВСМ догоняющей, морально устаревшей и более затратной, чем магнитолевитационная.

Чтобы не дразнить монополиста РЖД, сторонники магнитолевитационных систем предлагают развивать маглевы в качестве городского транспорта. По словам Анатолия Зайцева, сейчас ведутся переговоры с властями Петербурга, Москвы и Волгограда, проявившими заинтересованность в появлении нового вида пассажирского сообщения. Маглев выигрывает по многим параметрам, если сравнивать его с традиционным городским транспортом. Строительство маглева обходится в 3-4 раза дешевле, чем метро. Расход электроэнергии у него ниже, а провозная способность выше, чем у подземки. Маглев экологичен. Из-за отсутствия контакта с поверхностью (колеса не стучат по рельсам) от него почти нет шума, вибрации и пыли. Нет выхлопных газов. Поэтому маглев идеален для мегаполисов с плотной застройкой.

Сегодня в Смольном на рассмотрении находятся несколько проектов городского маглева. Линия от Дворца конгрессов (Стрельна) до метро «Обухово», с ответвлением в жилой комплекс «Балтийская жемчужина». Линия от метро «Рыбацкое» до Колпина и другие.

У нас в России достаточно мозгов, чтобы все это построить. Мы не просим бюджетного финансирования, потому что когда привлекается бюджет, обязательно кто-нибудь что-нибудь отпилит, - говорит экс-министр Зайцев, готовый найти инвесторов на предложенные проекты.

Основная проблема, почему маглев массово не строится по всему свету, - это очень дорого. Если удастся удешевить технологию, тогда он завоюет мир, - уверен профессор Клюшпис.

Hyperloop изобрели в России 100 лет назад

Первый проект движения поездов в вакууме был предложен в России еще в 1911 году российским ученым Борисом Вейнбергом. По его замыслу, внутри трубы, из которой откачан воздух, должна была перемещаться капсула. Она приводилась в движение с помощью «электромагнитной пушки» и теоретически могла развивать скорость 800-1000 км/ч. Ученый даже провел опыты в Томском технологическом институте по перемещению капсулы в трубе, но воплощению идеи помешала Первая мировая война.

Невзирая на то, что с момента создания первых паровозов прошло уже более двухсот лет, человечество до сих пор не готово полностью отказаться от использования дизельного топлива, силы пара и электричества в качестве движущей мощи, способной перемещать тяжеловесные грузы и пассажиров.

Однако, как вы сами понимаете, все это время инженеры-изобретатели не пребывали в полном бездействии, и результатом работы их мысли стал выход в свет альтернативных способов транспортировки по железнодорожному полотну.

История возникновения поездов на электромагнитной подушке

Сама идея изготовления поезда, передвигающегося на магнитной подушке не так уж нова. Впервые о создании подобного подвижного состава изобретатели стали задумываться еще в самом начале XX столетия, однако по ряду причин воплощение данного проекта осуществить не удавалось на протяжении довольно длительного времени.

Только к 1969 году на территории тогдашнего ФРГ приступили к изготовлению подобного поезда, впоследствии нареченного маглевом, и укладыванию магнитной трассы. Запуск первого маглева под названием «Трансрапид-02» был произведен уже спустя два года.

Интересным является тот факт, что при изготовлении маглева немецкие инженеры основывались на записях, произведенных ученым Германом Кемпером, получившим патент на создание магнитоплана еще в 1934 году. Первый маглев «Транрапид-02» высокоскоростным не назовешь, так как скорость он развивал всего лишь до 90 км/ч. Вместимость его также была очень низкой: всего четыре человека.

Последующая модель маглева, созданная в 1979 году, «Трансрапид-05» вмещала уже до 68 пассажиров и двигалась по пассажирской линии города Гамбурга, имеющей протяженность в 908 м, со скоростью 75 км/ч.


Трансрапид-05

Параллельно на другом конце континента, в Японии, в том же 1979 году был запущен маглев модели «МЛ-500», способный развить скорость аж до 517 км/ч.

Что такое маглев и каков принцип его работы?

Маглев (или попросту поезд на магнитной подушке) - это разновидность транспорта, управляемого и приводимого в движение посредством силы магнитного поля. При этом маглев не касается железнодорожного полотна, а «левитирует» над ним, удерживаемый искусственно созданным магнитным полем. При этом исключается трение, тормозящей силой выступает только аэродинамическое сопротивление.

На ближнемагистральных направлениях в будущем маглев может составить серьезную конкуренцию воздушному транспорту ввиду своей возможности развивать очень высокую скорость передвижения. На сегодняшний день повсеместному внедрению маглевов в большой мере препятствует то, что они не могут быть применены на традиционном магистральном железнодорожном покрытии. Маглев может передвигаться лишь на специально построенной магнитной магистрали, что требует очень крупных капиталовложений.

Также считается, что магнитный транспорт способен негативно воздействовать на организм машинистов и жителей приближенных к магнитным трассам регионов.

Преимущества маглевов

К достоинствам маглевов относится обширная перспектива достижения высоких скоростей, способных конкурировать даже с реактивной авиацией. Кроме того, маглев является довольно экономичным, в плане потребления электроэнергии, транспортом. К тому же практически отсутствует трение деталей, что позволяет существенно снизить уровень эксплуатационных расходов.



Рассказать друзьям