Найти координаты середины ав. Формулы деления отрезка в данном отношении

💖 Нравится? Поделись с друзьями ссылкой

Инструкция

Если интервал является участком непрерывной числовой последовательности, то для нахождения ее середины используйте математические методы вычисления среднеарифметического значения. Минимальное значение (его начало) сложите с максимальным () и разделите результат пополам - это один из способов вычисления среднеарифметического значения. Например, это применимо, когда речь идет о возрастных интервала х. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, так как (21+33)/2=27.

Иногда удобнее использовать другой метод вычисления среднеарифметического значения между верхней и нижней границами интервала . В этом варианте сначала определите ширину диапазона - отнимите от максимального значения минимальное. Затем поделите полученную величину пополам и прибавьте результат к минимальному значению диапазона. Например, если нижняя соответствует значению 47,15, а верхняя - 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, так как 47,15+(31,98/2) = 47,15+15,99 = 63,14.

Если интервал не является участком обычной числовой последовательности, то вычисляйте его середину в соответствии с цикличностью и размерностью используемой измерительной шкалы. Например, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.

Кроме обычных (закрытых) интервалов статистические методы исследований могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Например, открытый интервал может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется методом аналогий - если все остальные диапазоны рассматриваемой последовательности имеют одинаковую ширину, то предполагается, что и этот открытый интервал такую же . В противном случае вам надо определить динамику ширины интервалов, предшествующих открытому, и его условную ширину, исходя из полученной тенденции изменения.

Источники:

  • что такое открытый интервал

При изучении вариации – различий индивидуальных значений признака у единиц изучаемой совокупности – рассчитывают ряд абсолютных и относительных показателей. На практике наибольшее применение среди относительных показателей нашел коэффициент вариации.

Инструкция

Учтите, что коэффициент вариации на практике используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Если данный показатель не превышает 0,333, или 33,3%, вариация признака считается слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина – нетипичной, ее нельзя использовать как обобщающий показатель этой совокупности. Нижним пределом коэффициента вариации считается ноль, верхнего предела не существует. Однако вместе с увеличением вариации признака увеличивается и его значения.

При расчете коэффициента вариации вам придется использовать среднее отклонение. Оно определяется как квадратный корень , которую в свою очередь вы можете найти следующим образом: Д = Σ(Х-Хср)^2/N. Иными словами дисперсия – это средний квадрат отклонения от среднего арифметического значения. определяет, насколько в среднем отклоняются конкретные показатели ряда от их среднего значения. Оно является абсолютной мерой колеблемости признака, а потому четко интерпретируется.

После кропотливого труда я вдруг заметил, что размеры веб страниц достаточно велики, и если так пойдёт дальше, то можно тихо мирно озвереть =) Поэтому предлагаю вашему вниманию небольшое эссе, посвященное очень распространённой геометрической задаче – о делении отрезка в данном отношении , и, как частный случай, о делении отрезка пополам .

Данная задача по тем или иным причинам не вписалась в другие уроки, но зато сейчас есть прекрасная возможность рассмотреть её подробно и неторопливо. Приятная новость состоит в том, что мы немного отдохнём от векторов и сконцентрируем внимание на точках и отрезках.

Формулы деления отрезка в данном отношении

Понятие деления отрезка в данном отношении

Нередко обещанного вовсе ждать не приходится, сразу рассмотрим пару точек и, очевидное невероятное – отрезок :

Рассматриваемая задача справедлива, как для отрезков плоскости, так и для отрезков пространства. То есть, демонстрационный отрезок можно как угодно разместить на плоскости или в пространстве. Для удобства объяснений я нарисовал его горизонтально.

Что будем делать с данным отрезком? На этот раз пилить. Кто-то пилит бюджет, кто-то пилит супруга, кто-то пилит дрова, а мы начнём пилить отрезок на две части. Отрезок делится на две части с помощью некоторой точки , которая, понятно, расположена прямо на нём:

В данном примере точка делит отрезок ТАКИМ образом, что отрезок в два раза короче отрезка . ЕЩЁ можно сказать, что точка делит отрезок в отношении («один к двум»), считая от вершины .

На сухом математическом языке этот факт записывают следующим образом: , или чаще в виде привычной пропорции: . Отношение отрезков принято стандартно обозначать греческой буквой «лямбда», в данном случае: .

Пропорцию несложно составить и в другом порядке: – сия запись означает, что отрезок в два раза длиннее отрезка , но какого-то принципиального значения для решения задач это не имеет. Можно так, а можно так.

Разумеется, отрезок легко разделить в каком-нибудь другом отношении, и в качестве закрепления понятия второй пример:

Здесь справедливо соотношение: . Если составить пропорцию наоборот, тогда получаем: .

После того, как мы разобрались, что значит разделить отрезок в данном отношении, перейдём к рассмотрению практических задач.

Если известны две точки плоскости , то координаты точки , которая делит отрезок в отношении , выражаются формулами:

Откуда взялись данные формулы? В курсе аналитической геометрии эти формулы строго выводятся с помощью векторов (куда ж без них? =)). Кроме того, они справедливы не только для декартовой системы координат, но и для произвольной аффинной системы координат (см. урок Линейная (не) зависимость векторов. Базис векторов ). Такая вот универсальная задача.

Пример 1

Найти координаты точки , делящей отрезок в отношении , если известны точки

Решение : В данной задаче . По формулам деления отрезка в данном отношении, найдём точку :

Ответ :

Обратите внимание на технику вычислений: сначала нужно отдельно вычислить числитель и отдельно знаменатель. В результате часто (но далеко не всегда) получается трёх- или четырёхэтажная дробь. После этого избавляемся от многоэтажности дроби и проводим окончательные упрощения.

В задаче не требуется строить чертежа, но его всегда полезно выполнить на черновике:



Действительно, соотношение выполняется, то есть отрезок в три раза короче отрезка . Если пропорция не очевидна, то отрезки всегда можно тупо измерить обычной линейкой.

Равноценен второй способ решения : в нём отсчёт начинается с точки и справедливым является отношение: (человеческими словами, отрезок в три раза длиннее отрезка ). По формулам деления отрезка в данном отношении:

Ответ :

Заметьте, что в формулах необходимо переместить координаты точки на первое место, поскольку маленький триллер начинался именно с неё.

Также видно, что второй способ рациональнее ввиду более простых вычислений. Но всё-таки данную задачу чаще решают в «традиционном» порядке. Например, если по условию дан отрезок , то предполагается, что вы составите пропорцию , если дан отрезок , то «негласно» подразумевается пропорция .

А 2-ой способ я привёл по той причине, что частенько условие задачи пытаются намеренно подзапутать. Именно поэтому очень важно выполнять черновой чертёж чтобы, во-первых, правильно проанализировать условие, а, во-вторых, в целях проверки. Обидно допускать ошибки в такой простой задаче.

Пример 2

Даны точки . Найти:

а) точку , делящую отрезок в отношении ;
б) точку , делящую отрезок в отношении .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Иногда встречаются задачи, где неизвестен один из концов отрезка:

Пример 3

Точка принадлежит отрезку . Известно, что отрезок в два раза длиннее отрезка . Найти точку , если .

Решение : Из условия следует, что точка делит отрезок в отношении , считая от вершины , то есть, справедлива пропорция: . По формулам деления отрезка в данном отношении:

Сейчас нам неизвестны координаты точки : , но это не является особой проблемой, так как их легко выразить из вышеприведённых формул. В общем виде выражать ничего не стОит, гораздо проще подставить конкретные числа и аккуратно разобраться с вычислениями:

Ответ :

Для проверки можно взять концы отрезка и, пользуясь формулами в прямом порядке, убедиться, что при соотношении действительно получится точка . И, конечно же, конечно же, не лишним будет чертёж. А чтобы окончательно убедить вас в пользе клетчатой тетради, простого карандаша да линейки, предлагаю хитрую задачу для самостоятельного решения:

Пример 4

Точка . Отрезок в полтора раза короче отрезка . Найти точку , если известны координат точек .

Решение в конце урока. Оно, кстати, не единственное, если пойдёте отличным от образца путём, то это не будет ошибкой, главное, чтобы совпали ответы.

Для пространственных отрезков всё будет точно так же, только добавится ещё одна координата.

Если известны две точки пространства , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
.

Пример 5

Даны точки . Найти координаты точки , принадлежащей отрезку , если известно, что .

Решение : Из условия следует отношение: . Данный пример взят из реальной контрольной работы, и его автор позволил себе небольшую шалость (вдруг кто споткнётся) – пропорцию в условии рациональнее было записать так: .

По формулам координат середины отрезка:

Ответ :

Трёхмерные чертежи в целях проверки выполнять значительно сложнее. Однако всегда можно сделать схематический рисунок, чтобы разобраться хотя бы в условии – какие отрезки необходимо соотносить.

Что касается дробей в ответе, не удивляйтесь, обычное дело. Много раз говорил, но повторюсь: в высшей математике принято орудовать обыкновенными правильными и неправильными дробями. Ответ в виде пойдёт, но вариант с неправильными дробями более стандартен.

Разминочная задача для самостоятельного решения:

Пример 6

Даны точки . Найти координаты точки , если известно, что она делит отрезок в отношении .

Решение и ответ в конце урока. Если трудно сориентироваться в пропорциях, выполните схематический чертёж.

В самостоятельных и контрольных работах рассмотренные примеры встречаются как сами по себе, так и составной частью более крупных задач. В этом смысле типична задача нахождения центра тяжести треугольника.

Разновидность задания, где неизвестен один из концов отрезка, разбирать не вижу особого смысла, так как всё будет похоже на плоский случай, разве что вычислений чуть больше. Лучше вспомним годы школьные:

Формулы координат середины отрезка

Даже неподготовленные читатели могут помнить, как разделить отрезок пополам. Задача деления отрезка на две равные части – это частный случай деления отрезка в данном отношении. Двуручная пила работает самым демократичным образом, и каждому соседу за партой достаётся по одинаковой палке:

В этот торжественный час стучат барабаны, приветствуя знаменательную пропорцию . И общие формулы чудесным образом преображаются в нечто знакомое и простое:

Удобным моментом является тот факт, что координаты концов отрезка можно безболезненно переставить:

В общих формулах такой роскошный номер, как понимаете, не проходит. Да и здесь в нём нет особой надобности, так, приятная мелочь.

Для пространственного случая справедлива очевидная аналогия. Если даны концы отрезка , то координаты его середины выражаются формулами:

Пример 7

Параллелограмм задан координатами своих вершин . Найти точку пересечения его диагоналей.

Решение : Желающие могут выполнить чертёж. Граффити особенно рекомендую тем, кто капитально забыл школьный курс геометрии.

По известному свойству, диагонали параллелограмма своей точкой пересечения делятся пополам, поэтому задачу можно решить двумя способами.

Способ первый : Рассмотрим противоположные вершины . По формулам деления отрезка пополам найдём середину диагонали :

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

· Задача . Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

Решение . Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

Ответ : K = (0,5; 0; 1)

· Задача . Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

Решение . Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

Ответ : L = (0,5; 0,5; 1)

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти середину отрезка с помощью циркуля?Элементарная задачка о нахождении середины отрезка при помощи циркуля была сформулирована еще в античности. Часто ее приписывают древнегреческим мудрецам, однако, скорее всего, она присутствовала и в других культурах, в которых была развита математика и геометрия (например, в древнеегипетской). В древности эта задача имела и вполне практическое применение, ведь знание того, как найти середину отрезка при помощи простейших измерительных приборов, было полезно, например, в землемерстве, землеустройстве и строительстве. Сегодня, при наличии сложной измерительной техники, такое задание скорее представляет упражнение для развития интеллектуальных способностей и пространственной фантазии школьников.

Как же на самом деле решается данная задача? Берем циркуль и открываем его таким образом, чтобы радиус предполагаемой окружности был очевидно больше половины заданного отрезка. Теперь, ставим основание (иглу) циркуля в одну из точек, ограничивающих отрезок, и рисуем окружность выбранного радиуса. В принципе, решая задачу о том, как построить середину отрезка, достаточно нарисовать и полукруг, располагающийся "внутри" отрезка. Затем устанавливаем иглу циркуля в другой конец отрезка и повторяем процедуру очерчивания полукруга.Проделав описанную процедуру, видим, что наши окружности пересекаются в двух точках. Берем линейку и соединяем эти две точки прямой линией. Получаем линию перпендикулярную исходному отрезку. Именно точка пересечения этой линии и отрезка и является серединой последнего.

Конечно, здесь важно понять саму сущность данной задачи. Почему центр отрезка получится именно там, где пересекутся линии? Знание смысла данной задачи может, например пригодиться, при поиска ответа на вопрос о том, как найти середину треугольника, а также при решении других, более сложных геометрических задач.Итак, если соединить крайние точки исходного отрезка с точками пересечения наших окружностей, то получим четырехугольник. Но какой четырехугольник? Все его стороны являются радиусами наших окружностей, а значит равными по длине (ведь мы использовали одинаковый радиус). Любой четырехугольник с равными сторонами представляет собой ромб, диагонали которого всегда пересекаются под прямым углом и, что более важно для нашей задачи, делят друг друга пополам. Именно в этом и состоит логика подобного решения задачи о построении середины отрезка при помощи циркуля.

Если же вопрос формулируется иначе, а именно о том, как найти координаты середины отрезка, то для его решения необходимо знать координаты его конечных точек. Координаты же середины будут равны полусуммам координат точек окончания отрезка. Конечно, здесь уже используется декартова система координат, в связи с чем данные задачи имеют разную сущность, хотя и решают одну проблему.

В любом случае, решение разных формулировок геометрических задач очень полезно для развития интеллекта и образного мышления ребенка. Поэтому не стоит пренебрегать этими инструментами личностного развития.



Рассказать друзьям