Азот — «безжизненный» газ, крайне важный для всего живого. Где используют азот

💖 Нравится? Поделись с друзьями ссылкой

АЗОТ
N (nitrogenium) ,
химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом) и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3-), нитриты (NO2-), цианиды (CN-), нитриды (N3-) и азиды (N3-).
Историческая справка. Опыты А. Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает "безжизненный". В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его "вредный воздух". Латинское название азота происходит от греческих слов nitron и gen, что означает "образующий селитру".
Фиксация азота и азотный цикл. Термин "фиксация азота" означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (N содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно. Схематически электронное строение атома азота таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (-III) до (V), и они известны.
См. также АТОМА СТРОЕНИЕ .
Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N-N равно 1,095 . Как и в случае с водородом (см. ВОДОРОД), существуют молекулы азота с различным спином ядра - симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a - кубическая и b - гексагональная с температурой перехода a (r) b -237,39° С. Модификация b плавится при -209,96° С и кипит при -195,78° C при 1 атм (см. табл. 1). Энергия диссоциации моля (28,016 г или 6,023*10 23 молекул) молекулярного азота на атомы (N2 2N) равна примерно -225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.
Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.
Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.
Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:


Очень удобен процесс окисления иона аммония нитрит-ионом:

Известны и другие способы - разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:


При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

Физические свойства. Некоторые физические свойства азота приведены в табл. 1.
Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Плотность, г/см3 0,808 (жидк.) Температура плавления, ° С -209,96 Температура кипения, ° С -195,8 Критическая температура, ° С -147,1 Критическое давление, атма 33,5 Критическая плотность, г/см3 а 0,311 Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С) Электроотрицательность по Полингу 3 Ковалентный радиус, 0,74 Кристаллический радиус, 1,4 (M3-) Потенциал ионизации, Вб

первый 14,54 второй 29,60


а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.


Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl5 - стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.
Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ
Степень окисления Примеры соединений
-III Аммиак NH3, ион аммония NH4+, нитриды M3N2 -II Гидразин N2H4 -I Гидроксиламин NH2OH I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O II Оксид азота(II) NO III Оксид азота(III) N2O3, нитрит натрия NaNO2 IV Оксид азота(IV) NO2, димер N2O4 V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты) Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами - нитриды, - похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M-N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.
Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3-. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.
Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN - высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.
Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов - Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.
Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ). Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода - аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).
Аммиак NH3. Аммиак - один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).
Строение молекулы. Молекула NH3 имеет почти пирамидальное строение. Угол связи H-N-H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.


Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ


Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).
Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

Синий цвет связывают с сольватацией и движением электронов или с подвижностью "дырок" в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация


аналогично процессу, протекающему в воде


Некоторые химические свойства обеих систем сопоставлены в табл. 4. Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой. Получение аммиака. Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:


Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.
Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака ("нашатырный спирт") состоит преимущественно из NH3, H2O и малых концентраций ионов NH4+ и OH-, образующихся при диссоциации

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH3. Поэтому NH3 - это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:


Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4. Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

Аммиак реагирует с гидридами и нитридами также с образованием амидов:


Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3. Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:


Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2. Чистый безводный гидразин - бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

В кислой среде (H+) гидразин образует растворимые соли гидразония типа []+X-. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N2O, NO, N2O3, NO2 (N2O4), N2O5. Имеется скудная информация об образовании пероксидов азота (NO3, NO4). Оксид азота(I) N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

Молекула имеет линейное строение

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как "веселящий газ", используют для умеренной анестезии в медицине. Оксид азота(II) NO - бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:


NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например, в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N2O2. Оксид азота(III) N2O3 (триоксид азота) - ангидрид азотистой кислоты: N2O3 + H2O 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (-20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. -102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2. Оксид азота(IV) NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):


NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:


а также по реакциям:


При комнатной температуре NO2 - газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при -9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4. NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта - азотной кислоты. Оксид азота(V) N2O5 (устар. ангидрид азотной кислоты) - белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:


N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием


N2O5 - хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как


Оксокислоты азота. Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3. Гипоазотистая кислота H2N2O2 - очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла - гипонитрита при действии другой кислоты: M2N2O2 + 2HX 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H-O-N=N-O-H.
Азотистая кислота HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H-O-N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты. Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты - нитриты - хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей. Азотная кислота HNO3 - один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др.
См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ .
ЛИТЕРАТУРА
Справочник азотчика. М., 1969 Некрасов Б.В. Основы общей химии. М., 1973 Проблемы фиксации азота. Неорганическая и физическая химия. М., 1982

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "АЗОТ" в других словарях:

    - (N) химический элемент, газ, без цвета, вкуса и запаха; составляет 4/5 (79 %) воздуха; уд. вес 0,972; атомный вес 14; сгущается в жидкость при 140 °С. и давлении 200 атмосфер; составная часть многих растительных и животных веществ. Словарь… … Словарь иностранных слов русского языка

    АЗОТ - АЗОТ, хим. элемент, симв. N (франц. AZ), порядковый номер 7, ат. в. 14,008; точка кипения 195,7°; 1 л А. при 0° и 760 мм давл. весит 1,2508 г [лат. Nitrogenium («порождающий селитру»), нем. Stickstoff («удушающее… … Большая медицинская энциклопедия

    - (лат. Nitrogenium) N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067. Название от греческой a отрицательная приставка и zoe жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2 атомных… … Большой Энциклопедический словарь

    азот - а м. azote m. <араб. 1787. Лексис.1. алхим. Первая материя металлов металлическая ртуть. Сл. 18. Пустился он <парацельс> на конец по свету, предлагая всем за весьма умеренную цену свой Лауданум и свой Азот, для изцеления всех возможных… … Исторический словарь галлицизмов русского языка

    - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 шС. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Современная энциклопедия

    Азот - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 °С. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Иллюстрированный энциклопедический словарь

    - (хим. знак N, атомный вес 14) один из химических элементов;бесцветный газ, не имеющий ни запаха, ни вкуса; очень мало растворим вводе. Удельный вес его 0.972. Пикте в Женеве и Кальете в Париже удалосьсгустить азот, подвергая его высокому давлению … Энциклопедия Брокгауза и Ефрона

Азот — газ, простое химическое вещество, неметалл, элемент таблицы Менделеева. Латинское название Nitrogenium переводится как «рождающий селитры».

Название «азот» и созвучные ему используются во многих странах: во Франции, Италии, России, Турции, в некоторых восточнославянских и в странах бывшего СССР. По основной версии, название «азот» происходит от греческого слова azoos — «безжизненный», так как не пригоден для дыхания.

Азот в основном встречается как газ — в воздухе его около 78% (по объему). Месторождения полезных ископаемых, а которых он содержится — например, чилийской селитры (нитрат натрия), индийской селитры (нитрат калия) большей частью уже истощены, поэтому в промышленных масштабах реактив добывают химическим синтезом прямо из атмосферы.

Свойства

В нормальных условиях N2 — газ без вкуса, цвета и запаха. Не горит, пожаро- и взрывобезопасен, плохо растворяется в воде, спиртах, не токсичен. Плохо проводит тепло и электричество. При температуре ниже -196 °С становится сначала жидким, потом твердым. Жидкий азот — прозрачная, подвижная жидкость.

Молекула азота очень стабильна, поэтому химреактив в основном инертен, взаимодействует в нормальных условиях только с литием, цезием и комплексами переходных металлов. Для проведения реакций с другими веществами требуются особые условия: очень высокая температура и давление, а иногда и катализатор. Не вступает в реакции с галогенами, серой , углеродом, кремнием, фосфором.

Элемент крайне важен для жизни всего живого. Он является неотъемлемой частью белков, нуклеиновых кислот, гемоглобина, хлорофилла и многих других биологически важных соединений. Играет основную роль в обмене веществ живых клеток и организмов.

Азот выпускается в виде сжатого при 150 атмосфер газа, поставляется в баллонах черного цвета с крупной и четкой надписью желтого цвета. Жидкий реагент хранят в сосудах Дьюара (термос с двойными стенками, с серебрением изнутри и вакуумом между стенок).

Опасность азота

В обычных условиях азот не вреден для человека и животных, но при повышенном давлении вызывает наркотическое опьянение, а при нехватке кислорода — удушье. С азотом и его воздействием на кровь человека при резком снижении давления связана очень опасная кессонная болезнь.

Вероятно, все хотя бы однажды видели в фильмах или сериалах, как жидким азотом мгновенно замораживают людей или замки на решетке, сейфе и т. п., после чего они становятся хрупкими и легко разбиваются. На самом деле жидкий азот замораживает достаточно медленно, ввиду своей малой теплоемкости. Именно поэтому с его помощью нельзя замораживать людей для последующей разморозки — не получается равномерно и одномоментно заморозить все тело и органы.

Азот относится к пниктогенам — химическим элементам той же подгруппы таблицы Менделеева, что и он сам. Кроме азота к пниктогенам относят фосфор, мышьяк, сурьму, висмут и искусственно полученный московий.

Жидкий азот — идеальный материал для тушения пожаров, особенно с ценными объектами. После тушения азотом не остается ни воды, ни пены, ни порошка, а газ просто выветривается.

Применение

— Три четверти всего выпускаемого в мире азота идет на производство аммиака , из которого, в свою очередь, производят широко использующуюся в разных сферах промышленности азотную кислоту .
— В сельском хозяйстве соединения азота используются как удобрения, а сам азот — для лучшей сохранности овощей в овощехранилищах.
— Для производства взрывчатых веществ, детонаторов, топлива для космических аппаратов (гидразина).
— Для изготовления красителей, медикаментов.
— При перекачке горючих веществ по трубам, в шахтах, в электронных приборах.
— Для тушения кокса в металлургии, для создания нейтральной атмосферы в промышленных процессах.
— Для продувки труб и резервуаров; распирания пластов в горнодобыче; прокачки топлива в ракетах.
— Для закачки в самолетные шины, иногда — в автомобильные.
— Для производства особой керамики — нитрида кремния, обладающего повышенной механической, термической, химической стойкостью и многими другими полезными характеристиками.
— Пищевую добавку Е941 используют для создания в упаковках консервирующей среды, исключающей окисление и развитие микроорганизмов. Жидкий азот используют при разливе напитков и масел.

Жидкий азот применяется как:

— Хладагент в криостатах, вакуумных установках и т. п.
— В криогенной терапии в косметологии и медицине, для проведения некоторых видов диагностики, для хранения образцов биоматериалов, спермы, яйцеклеток.
— В криогенной резке.
— Для тушения пожаров. Испаряясь, реагент образует массу газа в 700 раз большую, чем объем жидкости. Этот газ оттесняет кислород от пламени, и оно тухнет.

В нашей семье сладкий перец любят, поэтому и высаживаем его каждый год. Большинство сортов, которые я выращиваю, проверены мною на протяжении не одного сезона, их я культивирую постоянно. А еще каждый год стараюсь попробовать что-то новенькое. Перец - растение теплолюбивое и достаточно прихотливое. О сортовых и гибридных разновидностях вкусного и урожайного сладкого перца, который хорошо у меня растет, и пойдет речь далее. Я проживаю в средней полосе России.

Домашнее цветоводство - не только увлекательный процесс, но и весьма хлопотное хобби. И, как правило, чем больше опыта у цветовода, тем здоровее выглядят его растения. А что делать тем, кто не имеет опыта, но хочет иметь дома комнатные растения – не вытянувшиеся чахлые экземпляры, а красивые и здоровые, не вызывающие чувство вины своим угасанием? Для новичков и цветоводов, не обременённых большим стажем, расскажу об основных ошибках, которые легко избежать.

Пышные сырники на сковороде с бананово-яблочным конфитюром - ещё один рецепт всеми любимого блюда. Чтобы сырники не опадали после приготовления, запомните несколько простых правил. Во-первых, только свежий и сухой творог, во-вторых, никаких разрыхлителей и соды, в-третьих, густота теста - из него можно лепить, оно не тугое, но податливое. Хорошее тесто с малым количеством муки получится только из хорошего творога, а тут снова смотрите пункт «во-первых».

Не секрет, что многие препараты из аптек перекочевали на дачные участки. Их применение, на первый взгляд, кажется таким экзотичным, что некоторыми дачниками воспринимается чуть ли не в штыки. При этом марганцовка - давно известный антисептик, который применяется и в медицине, и в ветеринарии. В растениеводстве раствор марганцовки применяют и как антисептик, и как удобрение. В этой статье расскажем, как правильно использовать марганцовку в саду и огороде.

Мясной салат из свинины с грибами - сельское блюдо, которое частенько можно встретить на праздничном столе в деревне. Этот рецепт с шампиньонами, но если есть возможность использовать лесные грибы, то обязательно готовьте так, будет ещё вкуснее. Много времени тратить на приготовление этого салата не нужно - 5 минут сложить мясо в кастрюлю и ещё 5 минут на нарезку. Всё остальное происходит практически без участия повара - мясо и грибы варятся, остывают, маринуются.

Огурцы хорошо растут не только в теплице или оранжерее, но и в открытом грунте. Обычно посев огурцов производится с середины апреля до середины мая. Сбор урожая в таком случае возможен с середины июля до конца лета. Огурцы не переносят мороза. Вот почему мы не сеем их слишком рано. Однако есть способ приблизить их урожай и отведать сочных красавчиков со своей грядки еще в начале лета или даже в мае. Необходимо только учесть некоторые особенности этого растения.

Полисциас – прекрасная альтернатива классическим пестролистным кустарникам и древесным. Нарядные круглые или перистые листья у этого растения создают поразительно праздничную курчавую крону, а элегантные силуэты и достаточно скромный характер превращают его в прекрасного кандидата на роль самого большого растения в доме. Более крупные листья не мешают ему успешно заменять фикусы Бенджамина и Ко. Тем более что полисциас предлагает куда больше разнообразие.

Тыквенная запеканка с корицей - сочная и невероятно вкусная, немножко похожа на тыквенный пирог, но, в отличие от пирога, она более нежная и просто тает во рту! Это идеальный рецепт сладкой выпечки для семьи, в которой есть дети. Как правило, тыкву малыши не очень любят, зато полакомиться сладеньким никогда не против. Сладкая запеканка из тыквы - вкусный и полезный десерт, который, к тому же, и готовится очень просто и быстро. Попробуйте! Вам понравится!

Живая изгородь - это не только один из важнейших элементов ландшафтного дизайна. Она выполняет и различные защитные функции. Если, например, сад граничит с проезжей дорогой, или неподалеку проходит автотрасса, то живая изгородь просто необходима. «Зеленые стены» защитят сад от пыли, шума, ветра и создадут особый уют и микроклимат. В этой статье рассмотрим оптимальные растения для создания живой изгороди, которая сможет надежно защитить участок от пыли.

Многим культурам в первые недели развития необходима пикировка (и даже не одна), а другим - пересадка «противопоказана». Чтобы «угодить» и тем, и другим, можно использовать не совсем стандартные ёмкости для рассады. Еще один весомый повод их попробовать - экономия средств. В этой статье расскажем, как обойтись без привычных ящиков, горшочков, кассет и таблеток. И обратим внимание на не традиционные, но очень эффективные и интересные ёмкости для рассады.

Полезный овощной суп из краснокочанной капусты с сельдереем, красным луком и свеклой - рецепт вегетарианского супа, который также можно готовить в постные дни. Тем, кто решил сбросить несколько лишних килограммов, я посоветую не добавлять картофель, и немного уменьшить количество оливкового масла (достаточно 1 столовой ложки). Суп получается очень ароматным и густым, а в пост можно подать порцию супчика с постным хлебом - тогда получится сытно и полезно.

Наверняка все уже слышали о популярном термине «хюгге», который пришёл к нам из Дании. Это слово никак не переводится на другие языки мира. Потому что обозначает много всего сразу: уют, счастье, гармонию, душевную атмосферу... В этой северной стране, кстати, большая часть времени в году - пасмурная погода и мало солнца. Ещё и лето короткое. А уровень счастья при этом - один из самых высоких (страна регулярно занимает первое место в общемировом рейтинге ООН).

Мясные шарики в соусе с картофельным пюре - простое второе блюдо, приготовленное по мотивам итальянкой кухни. Более привычное название этого блюда - тефтели или мясные фрикадельки, однако итальянцы (и не только они) называют такие небольшие круглые котлетки мясными шариками. Котлетки сначала обжаривают до золотистой корочки, а затем тушат в густом овощном соусе - получается очень вкусно, просто объедение! Фарш для этого рецепта подходит любой - куриный, говяжий, свиной.


Азот – это малорастворимый в воде газ, не имеющий цвета, запаха и вкуса. В свободном виде азот может применяться в различных отраслях промышленности. Рассмотрим подробнее те отрасли, где используют азот.

Металлургия

  • При отжиге, спекании порошковым металлом.
  • При нейтральной закалке, пайке твердым припоем.
  • При цианировании (азот необходим для защиты черных и цветных металлов).
  • Азот также играет важную роль в работе загрузочного устройства в доменной печи, машины для огневой зачистки металлов.
  • На коксохимическом производстве.

Химия, газ, нефть

  • Азот газообразный применяется при освоении скважин. С его помощью снижают уровень воды в скважинах. Данный метод является весьма перспективным, характеризуется он надежностью, а также простотой контроля и регулирования процесса в широком диапазоне значений давлений и расходов. С помощью газообразного азота быстро осуществляется опорожнение глубоких скважин, быстрое и резкое, либо медленное и плавное снижение в скважине давления. Азот обеспечивает дренирование пласта и подпитку сжатым газом, что необходимо для фонтанирования жидкости.
  • Азот применяют при создании инертной среды в различных емкостях во время разгрузочно-погрузочных работ. Также азот применяется при тушении пожаров, во время испытаний и продувки трубопровода.
  • Азот в чистом виде используется в целях синтеза аммиака, при производстве удобрений азотного типа, а также при переработке сопутствующих газов и конверсии метана.
  • Азот применяется для сокращения отложений на заводах по переработке нефти, для переработки компонентов с высоким октановым числом для увеличения производительности заводов по крекингу нефти.

Пожаротушение

  • Азот обладает инертными свойствами, за счет которых возможно вытеснение кислорода и предотвращение реакции окисления. Горение является, по сути, быстрым окислением, за счет наличия в атмосфере кислорода и источника горения, которым может послужить искра, электрическая дуга или просто химическая реакция с большим количеством выделяемого тепла. Благодаря использованию азота, можно избежать такой ситуации. Если в среде концентрация азота составит 90%, то возгорание не произойдет.
  • Как стационарные азотные установки, так и мобильные станции для производства азота, могут эффективно предотвратить возгорание. С их помощью очаг возгорания может также быть успешно потушен.

Медицина

  • В исследованиях в лабораториях, для больничных анализов.

Горнодобывающая промышленность

  • В угледобывающих шахтах азот также нужен для пожаротушения.

Фармацевтика

  • Азот используется для упаковки, транспортировки и вытеснения кислорода из разнообразных резервуаров с продуктом.

Пищевая промышленность

  • Азот необходим для перевалки, хранения, упаковки продуктов питания (особенно сыров и масложировых продуктов, которые очень быстро окисляются кислородом), для увеличения срока их хранения, а также для сохранения вкусовых качеств этих продуктов.
  • Смесь азота и диоксида углерода позволяет остановить размножение бактерий.
  • Азот, создавая инертную среду, позволяет защитить продукты питания от вредоносных насекомых.
  • Азот выступает в качестве разбавителя для создания газовой смеси.

Целлюлозно-бумажная отрасль промышленности

  • Азот используется в процессах обработки катодным лучом бумаги, картона, и даже некоторых предметов из дерева, с целью полимеризовать лаковые покрытия. Такой способ позволяет понизить затраты на фотоинициаторы, а также снизить уровень выброса летучих соединений и повысить уровень качества обработки.
Таким образом, существует множество отраслей, где используют азот. И все это доказывает его универсальность и востребованность.

Азот бесцветный и нетоксичный, без запаха и вкуса. Азот существует в природе как невоспламеняющийся газ при нормальных температурах и давлении. Этот газ (азот) несколько легче воздуха, поэтому его концентрация с высотой повышается. При охлаждении до точки кипения азот превращается в бесцветную жидкость, которая при определенных давлении и температуре становится твердым бесцветным кристаллическим веществом. Азот слаборастворим в воде и большинстве других жидкостей, является плохим проводником электричества и тепла.

Большинство использований азота объясняется его инертными свойствами. Однако при высоких давлениях и температурах азот реагирует с некоторыми активными металлами, например с литием и магнием, образуя нитриды, а также с некоторыми газами, такими как кислород и водород.

Основные факты об азоте: история открытия и основные свойства

Азот (N2) - одно из самых распространённых веществ на Земле. Из него на 75% состоит атмосфера нашей планеты, тогда как доля кислорода в ней составляет всего 22%.

Как ни странно, учёные долгое время не знали о существовании этого газа. Лишь в 1772 году английский химик Дэниэл Резерфорд описал его как «испорченный воздух», неспособный поддерживать горение, не вступающий в реакцию со щелочами и непригодный для дыхания. Само слово «азот » (от греческого - «безжизненный») предложил 15 лет спустя Антуан Лавуазье.

При нормальных условиях это газ, не имеющий цвета, запаха и вкуса, тяжелее воздуха и практически инертный. При температуре -195,8 °C он переходит в жидкое состояние; при -209,9 °C - кристаллизуется, напоминая снег.

Области применения азота

В настоящее время, азот нашел широкое применение во всех сферах человеческой деятельности.

Так, нефтегазовая промышленность использует его с целью регуляции уровня и давления в нефтяных скважинах, вытеснения кислорода из ёмкостей для хранения природного газа, продувки и тестирования трубопроводов. Химическая промышленность нуждается в нём для получения удобрений и синтеза аммиака, металлургия - для ряда технологических процессов. Благодаря тому, что азот вытесняет кислород , но не поддерживает горение, его применяют в пожаротушении. В пищевой промышленности упаковка продуктов в азотной атмосфере заменяет использование консервантов, препятствует окислению жиров и развитию микроорганизмов. Кроме того, это вещество используется в фармацевтике для получения различных препаратов и в лабораторной диагностике - для проведения ряда анализов.

Жидкий азот способен за считанные секунды заморозить всё, что угодно, без образования кристалликов льда. Поэтому медики применяют его в криотерапии для удаления отмерших клеток, а также в криосохранении сперматозоидов, яйцеклеток и образцов тканей.

Интересно, что:

  • Мгновенное мороженое, приготовленное при помощи жидкого азота, изобрёл в 1998 году биолог Курт Джонс, дурачась с друзьями на кухне. Впоследствии он основал компанию по производству этого десерта, который пользуется спросом у американских сладкоежек.
  • Мировая промышленность получает из земной атмосферы 1 млн тонн этого газа в год.
  • Рука человека, погружённая в стакан с жидким азотом на 1-2 секунды, останется невредимой благодаря «перчатке» из пузырьков газа, который образуется при закипании жидкости в местах контакта с кожей.


Рассказать друзьям