Похідна e у ступені x та показової функції. Обчислення похідних статечно-показових функцій

💖 Подобається?Поділися з друзями посиланням

Доказ та виведення формул похідної експоненти (e у ступені x) та показової функції(a ступенем x). Приклади обчислення похідних від e^2x, e^3x та e^nx. Формули похідних вищих систем.

Похідна експоненти дорівнює самій експоненті (похідна e у ступені x дорівнює e у ступені x):
(1) (e x )′ = e x.

Похідна показової функції з основою ступеня a дорівнює самій функції, помноженій на натуральний логарифм від a:
(2) .

Висновок формули похідної експоненти, e ступенем x

Експонента - це показова функція, у якої основа ступеня дорівнює числу e, яке є такою межею:
.
Тут може бути як натуральним, так і дійсним числом. Далі ми виводимо формулу (1) похідної експоненти.

Висновок формули похідної експоненти

Розглянемо експоненту, e у ступені x :
y = e x.
Ця функція визначена всім . Знайдемо її похідну за змінною x. За визначенням, похідна є такою межею:
(3) .

Перетворимо цей вислів, щоб звести його до відомих математичних властивостей та правил. Для цього нам знадобляться такі факти:
а)Властивість експоненти:
(4) ;
Б)Властивість логарифму:
(5) ;
в)Безперервність логарифму та властивість меж для безперервної функції:
(6) .
Тут - деяка функція, у якої існує межа і ця межа позитивна.
г)Значення другої чудової межі:
(7) .

Застосовуємо ці факти до нашої межі (3). Використовуємо властивість (4):
;
.

Зробимо підстановку. Тоді; .
В силу безперервності експоненти,
.
Тому за , . В результаті отримуємо:
.

Зробимо підстановку. Тоді. При , . І ми маємо:
.

Застосуємо властивість логарифму (5):
. Тоді
.

Застосуємо властивість (6). Оскільки існує позитивна межа та логарифм безперервний, то:
.
Тут ми також скористалися другою чудовою межею (7). Тоді
.

Таким чином, ми отримали формулу (1) похідної експоненти.

Висновок формули похідної показової функції

Тепер виведемо формулу (2) похідної показової функції з основою ступеня a. Ми вважаємо, що і . Тоді показова функція
(8)
Визначено для всіх.

Перетворимо формулу (8). Для цього скористаємося властивостями показової функціїта логарифма.
;
.
Отже, ми перетворили формулу (8) на такий вид:
.

Похідні вищих порядків від e до ступеня x

Тепер знайдемо похідні найвищих порядків. Спочатку розглянемо експоненту:
(14) .
(1) .

Ми, що похідна від функції (14) дорівнює самій функції (14). Диференціюючи (1), отримуємо похідні другого та третього порядку:
;
.

Звідси видно, що похідна n-го порядку також дорівнює вихідній функції:
.

Похідні вищих порядків показової функції

Тепер розглянемо показову функцію з основою ступеня a:
.
Ми знайшли її похідну першого порядку:
(15) .

Диференціюючи (15), отримуємо похідні другого та третього порядку:
;
.

Ми, що кожне диференціювання призводить до множення вихідної функції на . Тому похідна n-го порядку має такий вигляд:
.

При виведенні першої формули таблиці виходити з визначення похідної функції у точці. Візьмемо, де x– будь-яке дійсне число, тобто, x- Будь-яке число з області визначення функції. Запишемо межу відношення збільшення функції до збільшення аргументу при:

Слід зазначити, що під знаком межі виходить вираз, який не є невизначеністю нуль ділити на нуль, тому що в чисельнику знаходиться не нескінченно мала величина, а саме нуль. Іншими словами, збільшення постійної функції завжди дорівнює нулю.

Таким чином, похідна постійної функціїдорівнює нулю по всій області визначення.

Похідна статечної функції.

Формула похідної статечної функціїмає вигляд де показник ступеня p- Будь-яке дійсне число.

Доведемо спочатку формулу для натурального показника ступеня, тобто для p = 1, 2, 3, …

Будемо користуватися визначенням похідної. Запишемо межу відношення збільшення статечної функції до збільшення аргументу:

Для спрощення виразу в чисельнику звернемося до формули бінома Ньютона:

Отже,

Цим доведено формулу похідної статечної функції для натурального показника.

Похідна показової функції.

Висновок формули похідної наведемо на основі визначення:

Прийшли до невизначеності. Для її розкриття введемо нову змінну, причому при. Тоді. В останньому переході ми використали формулу переходу до нової основи логарифму.

Виконаємо підстановку у вихідну межу:

Якщо згадати другу чудову межу, то прийдемо до формули похідної показової функції:

Похідна логарифмічна функція.

Доведемо формулу похідної логарифмічної функції всім xв галузі визначення та всіх допустимих значеннях підстави aлогарифму. За визначенням похідної маємо:

Як Ви помітили, за доказом перетворення проводилися з використанням властивостей логарифму. Рівність справедливо з другого чудової межі.

Похідні тригонометричних функцій.

Для виведення формул похідних тригонометричних функцій нам доведеться згадати деякі формули тригонометрії, а також перша чудова межа.

За визначенням похідної для функції синуса маємо .

Скористаємося формулою різниці синусів:

Залишилося звернутися до першої чудової межі:

Таким чином, похідна функції sin xє cos x.

Абсолютно аналогічно доводиться формула похідної косинуса.

Отже, похідна функції cos xє -sin x.

Виведення формул таблиці похідних для тангенсу та котангенсу проведемо з використанням доведених правил диференціювання (похідна дробу).

Похідні гіперболічні функції.

Правила диференціювання та формула похідної показової функції з таблиці похідних дозволяють вивести формули похідних гіперболічного синуса, косинуса, тангенсу та котангенсу.

Похідна зворотної функції.

Щоб при викладі не було плутанини, давайте позначати в нижньому індексі аргумент функції, за яким виконується диференціювання, тобто це похідна функції f(x)по x.

Тепер сформулюємо правило знаходження похідної зворотної функції.

Нехай функції y = f(x)і x = g(y)взаємно зворотні, визначені на інтервалах та відповідно. Якщо у точці існує кінцева відмінна від нуля похідна функції f(x), то в точці існує кінцева похідна зворотної функції g(y), причому . В іншому записі .

Можна це правило переформулювати для будь-кого xз проміжку, тоді отримаємо .

Перевіримо справедливість цих формул.

Знайдемо зворотну функцію для натурального логарифму (тут y- функція, а x- Аргумент). Дозволивши це рівняння щодо x, отримаємо (тут x- функція, а y- Її аргумент). Тобто, та взаємно зворотні функції.

З таблиці похідних бачимо, що і .

Переконаємося, що формули знаходження похідних зворотної функції призводять нас до цих результатів:

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно певні правиладиференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функційзнаходимо у таблиці похідних, а формули похідних твори, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапівивчення похідних, але з розв'язання кількох одно- двухсоставных прикладів середній студент цієї помилки не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка- механічне вирішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значенняпохідної квадратного кореня отримуємо:

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Цим відео я починаю довгу серію уроків, присвячену похідним. Цей урок складається з кількох частин.

Насамперед, я розповім вам, що взагалі таке похідні і як їх вважати, але не хитромудрою академічною мовою, а так, як я сам це розумію і як пояснюю своїм учням. По-друге, ми розглянемо найпростіше правило для вирішення завдань, в яких шукатимемо похідні суми, похідні різниці та похідні статечної функції.

Ми розглянемо складніші комбіновані приклади, з яких ви, зокрема, дізнаєтеся, що подібні завдання, що містять коріння і навіть дроби, можуть бути вирішені при використанні формули похідної статечної функції. Крім того, звичайно, буде безліч завдань і прикладів рішень різного рівня складності.

Взагалі, спочатку я збирався записати коротенький 5-хвилинний ролик, але бачите, що з цього вийшло. Тому вистачить лірики – приступаємо до справи.

Що таке похідна?

Отже, почнемо здалеку. Багато років тому, коли дерева були зеленішими, а життя було веселішим, математики замислилися ось над чим: розглянемо просту функцію, задану своїм графіком, назвемо її $y=f\left(x \right)$. Зрозуміло, графік існує не сам собою, тому потрібно провести осі $x$, а також вісь $y$. А тепер давайте виберемо будь-яку точку на цьому графіку, абсолютно будь-яку. Абсцис назвемо $((x)_(1))$, ордината, як не важко здогадатися, буде $f\left(((x)_(1)) \right)$.

Розглянемо на тому ж графіку ще одну точку. Не важливо, яку, головне, щоб вона відрізнялася від первісної. У неї, знову ж таки, є абсциса, назвемо її $((x)_(2))$, а також ордината - $f\left(((x)_(2)) \right)$.

Отже, ми отримали дві точки: у них різні абсциси і, отже, різні значенняфункції, хоча останнє необов'язково. А ось що справді важливо, то це що, що з курсу планіметрії нам відомо: через дві точки можна провести пряму і, до того ж, лише одну. Ось давайте її і проведемо.

А тепер проведемо через найпершу з них пряму, паралельну до осі абсцис. Отримаємо прямокутний трикутник. Давайте позначимо його $ABC$, прямий кут $C$. У цього трикутника виникає одне дуже цікава властивість: Справа в тому, що кут $ \ alpha $, насправді, дорівнює куту, під яким перетинається пряма $ AB $ з продовженням осі абсцис. Судіть самі:

  1. пряма $AC$паралельна осі $Ox$ за побудовою,
  2. пряма $AB$ перетинає $AC$ під $\alpha $,
  3. отже, $AB$ перетинає $Ox$під тим самим $\alpha $.

Що ми можемо сказати про $\text( )\!\!\alpha\!\!\text( )$? Нічого конкретного, хіба що в трикутнику $ABC$ставлення катета $BC$ до катета $AC$ дорівнює тангенсу цього самого кута. Так і запишемо:

Зрозуміло, $AC$ в даному випадкулегко вважається:

Так само і $BC$:

Іншими словами, ми можемо записати таке:

\[\operatorname(tg)\text( )\!\!\alpha\!\!\text( )=\frac(f\left(((x)_(2)) \right)-f\left( ((x)_(1)) \right))(((x)_(2))-((x)_(1)))\]

Тепер, коли ми все це з'ясували, повернімося до нашого графіку і розглянемо нову точку $B$. Зітріть старі значення і візьмемо і візьмемо $B$ десь ближче до $((x)_(1))$. Знову позначимо її абсцису за $((x)_(2))$, а ординату - $f\left(((x)_(2)) \right)$.

Знову розглянемо наш маленький трикутник $ABC$і $\text( )\!\!\alpha\!\!\text( )$ всередині нього. Цілком очевидно, що це буде вже зовсім інший кут, тангенс буде також іншим тому, що довжини відрізків $AC$ і $BC$ суттєво змінилися, а формула для тангенсу кута анітрохи не змінилася — це, як і раніше, співвідношення між зміною функції та зміною аргументу .

Нарешті, продовжуємо рухати $B$ все ближче до початкової точки $A$, в результаті трикутник ще зменшиться, а пряма, що містить відрізок $AB$, все більше буде схожою на графіку до функції.

У результаті, якщо продовжувати зближення точок, тобто зменшувати відстань до нуля, то пряма $AB$ дійсно перетвориться на дотичну до графіка в цій точці, а $\text( )\!\!\alpha\!\ !\text( )$перетвориться з звичайного елементатрикутника в кут між дотичною до графіка та позитивним напрямом осі $Ox$.

І ось тут ми плавно переходимо до визначення $f$, а саме похідної функції в точці $((x)_(1))$ називається тангенс кута $\alpha $ між дотичною до графіка в точці $((x)_( 1))$ і позитивним напрямком осі $Ox$:

\[(f)"\left(((x)_(1)) \right)=\operatorname(tg)\text( )\!\!\alpha\!\!\text( )\]

Повертаючись до нашого графіку, слід зазначити, що $((x)_(1))$ можна вибрати будь-яку точку на графіку. Наприклад, з тим самим успіхом ми могли зняти штрих у точці, показаній на малюнку.

Кут між дотичним та позитивним напрямком осі назвемо $\beta$. Відповідно, $f$ $((x)_(2))$ дорівнюватиме тангенсу цього кута $\beta $.

\[(f)"\left(((x)_(2)) \right)=tg\text( )\!\!\beta\!\!\text( )\]

У кожній точці графіка буде своя дотична, отже, своє значення функції. У кожному з цих випадків крім точки, в якій ми шукаємо похідну різниці або суми, або похідну статечної функції, необхідно взяти іншу точку, що знаходиться на деякій відстані від неї, а потім спрямувати цю точку до вихідної і, зрозуміло, з'ясувати, як у процесі такого руху змінюватиметься тангенс кута нахилу.

Похідна статечної функції

На жаль, подібне визначення нас зовсім не влаштовує. Всі ці формули, картинки, кути не дають нам найменшого уявлення про те, як вважати реальну похідну в реальних завданнях. Тому давайте трохи відвернемося від формального визначення та розглянемо більш дієві формули та прийоми, за допомогою яких вже можна вирішувати справжні завдання.

Почнемо з самих простих конструкцій, Зокрема, функцій виду $y=((x)^(n))$, тобто. статечних функцій. У цьому випадку ми можемо записати наступне: $(y)"=n\cdot ((x)^(n-1))$. Іншими словами, ступінь, що стояла в показнику, показується в множнику спереду, а сам показник зменшується на одиницю. Наприклад:

\[\begin(align)& y=((x)^(2)) \\& (y)"=2\cdot ((x)^(2-1))=2x \\\end(align) \]

А ось інший варіант:

\[\begin(align)& y=((x)^(1)) \\& (y)"=((\left(x \right))^(\prime ))=1\cdot ((x )^(0))=1\cdot 1=1 \\& ((\left(x \right))^(\prime ))=1 \\end(align)\]

Користуючись цими простими правилами, спробуємо зняти штрих наступних прикладів:

Отже, ми отримуємо:

\[((\left(((x)^(6)) \right))^(\prime ))=6\cdot ((x)^(5))=6((x)^(5)) \]

Тепер вирішимо другий вираз:

\[\begin(align)& f\left(x \right)=((x)^(100)) \\& ((\left(((x)^(100)) \right))^(\ prime ))=100\cdot ((x)^(99))=100((x)^(99)) \\\end(align)\]

Зрозуміло, це були дуже прості завдання. Однак реальні завдання складніші і вони не обмежуються одними лише ступенями функції.

Отже, правило № 1 – якщо функція представлена ​​у вигляді двох інших, то похідна цієї суми дорівнює сумі похідних:

\[((\left(f+g \right))^(\prime ))=(f)"+(g)"\]

Аналогічно, похідна різниці двох функцій дорівнює різниці похідних:

\[((\left(f-g \right))^(\prime ))=(f)"-(g)"\]

\[((\left(((x)^(2))+x \right))^(\prime ))=((\left(((x)^(2)) \right))^(\ prime ))+((\left(x \right))^(\prime ))=2x+1\]

Крім того, є ще одне важливе правило: якщо перед деякою $f$ стоїть константа $c$, на яку ця функція множиться, то $f$ всієї цієї конструкції вважається так:

\[((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"\]

\[((\left(3((x)^(3)) \right))^(\prime ))=3((\left(((x)^(3)) \right))^(\ prime ))=3\cdot 3((x)^(2))=9((x)^(2))\]

Нарешті, ще одне дуже важливе правило: у завданнях часто зустрічається окремий доданок, який взагалі не містить $x$. Наприклад, ми можемо спостерігати це у наших сьогоднішніх виразах. Похідна константи, тобто, числа, що не залежить від $x$, завжди дорівнює нулю, причому зовсім неважливо, чому дорівнює константа $c$:

\[((\left(c \right))^(\prime ))=0\]

Приклад рішення:

\[((\left(1001 \right))^(\prime ))=((\left(\frac(1)(1000) \right))^(\prime ))=0\]

Ще раз ключові моменти:

  1. Похідна суми двох функцій завжди дорівнює сумі похідних: $((\left(f+g \right))^(\prime ))=(f)"+(g)"$;
  2. По аналогічних причин похідна різниці двох функцій дорівнює різниці двох похідних: $((\left(f-g \right))^(\prime ))=(f)"-(g)"$;
  3. Якщо у функції є множник константа, то цю константу можна виносити за знак похідної: $((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"$;
  4. Якщо вся функція є константою, то її похідна завжди нуль: $((\left(c \right))^(\prime ))=0$.

Давайте подивимося, як все це працює на реальні приклади. Отже:

Записуємо:

\[\begin(align)& ((\left(((x)^(5))-3((x)^(2))+7 \right))^(\prime ))=((\left (((x)^(5)) \right))^(\prime ))-((\left(3((x)^(2)) \right))^(\prime ))+(7) "= \\& =5((x)^(4))-3((\left(((x)^(2)) \right))^(\prime ))+0=5((x) ^(4))-6x \\\end(align)\]

У цьому вся прикладі бачимо і похідну суми, і похідну різниці. Отже, похідна дорівнює $5((x)^(4))-6x$.

Переходимо до другої функції:

Записуємо рішення:

\[\begin(align)& ((\left(3((x)^(2))-2x+2 \right))^(\prime ))=((\left(3((x)^( 2)) \right))^(\prime ))-((\left(2x \right))^(\prime ))+(2)"= \\& =3((\left(((x)) ^(2)) \right))^(\prime ))-2(x)"+0=3\cdot 2x-2\cdot 1=6x-2 \\end(align)\]

Ось ми й знайшли відповідь.

Переходимо до третьої функції - вона вже серйозніша:

\[\begin(align)& ((\left(2((x)^(3))-3((x)^(2))+\frac(1)(2)x-5 \right)) ^(\prime ))=((\left(2((x)^(3)) \right))^(\prime ))-((\left(3((x)^(2))) \right ))^(\prime ))+((\left(\frac(1)(2)x \right))^(\prime ))-(5)"= \\& =2((\left(( (x)^(3)) \right))^(\prime ))-3((\left(((x)^(2)) \right))^(\prime ))+\frac(1) (2)\cdot (x)"=2\cdot 3((x)^(2))-3\cdot 2x+\frac(1)(2)\cdot 1=6((x)^(2)) -6x+\frac(1)(2) \\\end(align)\]

Відповідь ми виявили.

Переходимо до останнього виразу — найскладнішого і найдовшого:

Отже, вважаємо:

\[\begin(align)& ((\left(6((x)^(7))-14((x)^(3))+4x+5 \right))^(\prime ))=( (\left(6((x)^(7)) \right))^(\prime ))-((\left(14((x)^(3)) \right))^(\prime )) +((\left(4x \right))^(\prime ))+(5)"= \\& =6\cdot 7\cdot ((x)^(6))-14\cdot 3((x )^(2))+4\cdot 1+0=42((x)^(6))-42((x)^(2))+4 \\end(align)\]

Але на цьому рішення не закінчується, тому що нас просять не просто зняти штрих, а порахувати її значення в конкретній точці, тому підставляємо у вираз −1 замість $x$:

\[(y)"\left(-1 \right)=42\cdot 1-42\cdot 1+4=4\]

Йдемо далі і переходимо до ще складніших і цікавим прикладам. Справа в тому, що формула рішення статечної похідної $((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1))$ має ще більш широку сферу застосування, ніж зазвичай прийнято вважати. З її допомогою можна вирішувати приклади з дробами, корінням тощо. д. Саме цим ми зараз і займемося.

Для початку ще раз запишемо формулу, яка допоможе нам знайти похідну статечної функції:

А тепер увага: досі ми розглядали як $n$ лише натуральні числаОднак нічого не заважаємо розглянути дроби і навіть негативні числа. Наприклад, ми можемо записати таке:

\[\begin(align)& \sqrt(x)=((x)^(\frac(1)(2))) \\& ((\left(\sqrt(x) \right))^(\ prime ))=((\left(((x)^(\frac(1)(2))) \right))^(\prime ))=\frac(1)(2)\cdot ((x) ^(-\frac(1)(2)))=\frac(1)(2)\cdot \frac(1)(\sqrt(x))=\frac(1)(2\sqrt(x)) \\\end(align)\]

Нічого складного, тому подивимося, як ця формула допоможе нам при вирішенні більш складних завдань. Отже, приклад:

Записуємо рішення:

\[\begin(align)& \left(\sqrt(x)+\sqrt(x)+\sqrt(x) \right)=((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime )) \\& ((\ left(\sqrt(x) \right))^(\prime ))=\frac(1)(2\sqrt(x)) \\& ((\left(\sqrt(x) \right))^( \prime ))=((\left(((x)^(\frac(1)(3))) \right))^(\prime ))=\frac(1)(3)\cdot ((x )^(-\frac(2)(3)))=\frac(1)(3)\cdot \frac(1)(\sqrt(((x)^(2)))) \\& (( \left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(4))) \right))^(\prime )) =\frac(1)(4)((x)^(-\frac(3)(4)))=\frac(1)(4)\cdot \frac(1)(\sqrt(((x)) ^(3)))) \\\end(align)\]

Повертаємось до нашого прикладу та записуємо:

\[(y)"=\frac(1)(2\sqrt(x))+\frac(1)(3\sqrt(((x)^(2))))+\frac(1)(4 \sqrt(((x)^(3))))\]

Ось таке складне рішення.

Переходимо до другого прикладу — тут лише два доданки, але кожне містить як класичну ступінь, і коріння.

Зараз ми дізнаємося, як знайти похідну статечної функції, яка, крім того, містить і корінь:

\[\begin(align)& ((\left(((x)^(3))\sqrt(((x)^(2)))+((x)^(7))\sqrt(x) \right))^(\prime ))=((\left(((x)^(3))\cdot \sqrt(((x)^(2))) \right))^(\prime )) =((\left(((x)^(3))\cdot ((x)^(\frac(2)(3))) \right))^(\prime ))= \\& =(( \left(((x)^(3+\frac(2)(3))) \right))^(\prime ))=((\left(((x)^(\frac(11))(3 ))) \right))^(\prime ))=\frac(11)(3)\cdot ((x)^(\frac(8)(3)))=\frac(11)(3)\ cdot ((x)^(2\frac(2)(3)))=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2) ))) \\& ((\left(((x)^(7))\cdot \sqrt(x) \right))^(\prime ))=((\left(((x)^(7) ))\cdot ((x)^(\frac(1)(3))) \right))^(\prime ))=((\left(((x)^(7\frac(1)(3) ))) \right))^(\prime ))=7\frac(1)(3)\cdot ((x)^(6\frac(1)(3)))=\frac(22)(3 )\cdot ((x)^(6))\cdot \sqrt(x) \\\end(align)\]

Обидва доданки пораховані, залишилося записати остаточну відповідь:

\[(y)"=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2)))+\frac(22)(3) \cdot ((x)^(6))\cdot \sqrt(x)\]

Ми знайшли відповідь.

Похідна дроби через статечну функцію

Але і на цьому можливості формули для вирішення похідної статечної функції не закінчуються. Справа в тому, що з її допомогою можна вважати не лише приклади з корінням, але також і з дробами. Це якраз та рідкісна можливість, яка значно спрощує вирішення таких прикладів, але при цьому найчастіше ігнорується не лише учнями, а й вчителями.

Отже, зараз ми спробуємо поєднати одразу дві формули. З одного боку, класична похідна статечної функції

\[((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1))\]

З іншого боку ми знаємо, що вираз виду $\frac(1)(((x)^(n)))$ представимо у вигляді $((x)^(-n))$. Отже,

\[\left(\frac(1)(((x)^(n))) \right)"=((\left(((x)^(-n)) \right))^(\prime ) )=-n\cdot ((x)^(-n-1))=-\frac(n)(((x)^(n+1)))\]

\[((\left(\frac(1)(x) \right))^(\prime ))=\left(((x)^(-1)) \right)=-1\cdot ((x )^(-2))=-\frac(1)(((x)^(2)))\]

Таким чином, похідні простих дробів, де в чисельнику стоїть константа, а в знаменнику - ступінь, також вважаються за допомогою класичної формули. Подивимося, як це працює практично.

Отже, перша функція:

\[((\left(\frac(1)(((x)^(2))) \right))^(\prime ))=((\left(((x)^(-2))) right))^(\prime ))=-2\cdot ((x)^(-3))=-\frac(2)(((x)^(3)))\]

Перший приклад вирішено, переходимо до другого:

\[\begin(align)& ((\left(\frac(7)(4((x)^(4))))-\frac(2)(3((x)^(3)))+\ frac(5)(2)((x)^(2))+2((x)^(3))-3((x)^(4)) \right))^(\prime ))= \ \& =((\left(\frac(7)(4((x)^(4))) \right))^(\prime ))-((\left(\frac(2)(3(( x)^(3))) \right))^(\prime ))+((\left(2((x)^(3)) \right))^(\prime ))-((\left( 3((x)^(4)) \right))^(\prime )) \\& ((\left(\frac(7)(4((x)^(4))) \right))^ (\prime ))=\frac(7)(4)((\left(\frac(1)(((x)^(4))) \right))^(\prime ))=\frac(7 )(4)\cdot ((\left(((x)^(-4)) \right))^(\prime ))=\frac(7)(4)\cdot \left(-4 \right) \cdot ((x)^(-5))=\frac(-7)(((x)^(5))) \\& ((\left(\frac(2)(3((x)^) (3))) \right))^(\prime ))=\frac(2)(3)\cdot ((\left(\frac(1)(((x)^(3))) \right) )^(\prime ))=\frac(2)(3)\cdot ((\left(((x)^(-3)) \right))^(\prime ))=\frac(2)( 3)\cdot \left(-3 \right)\cdot ((x)^(-4))=\frac(-2)(((x)^(4))) \\& ((\left( \frac(5)(2)((x)^(2)) \right))^(\prime ))=\frac(5)(2)\cdot 2x=5x \\& ((\left(2) ((x)^(3)) \right))^(\prime ))=2\cdot 3((x)^(2))=6((x)^(2)) \\& ((\ left(3((x)^(4)) \right))^(\prime ))=3\cdot 4((x)^(3))=12((x)^(3)) \\\ end(align)\]...

Тепер збираємо всі ці доданки в єдину формулу:

\[(y)"=-\frac(7)(((x)^(5)))+\frac(2)(((x)^(4)))+5x+6((x)^ (2))-12((x)^(3))\]

Ми отримали відповідь.

Однак перш ніж рухатися далі, хотів би звернути вашу увагу на форму запису самих вихідних виразів: у першому виразі ми записали $f\left(x \right)=...$, у другому: $y=...$ Багато учнів губляться, коли бачать різні формизапис. Чим відрізняються $f\left(x \right)$ та $y$? Насправді нічим. Це просто різні записи з тим самим змістом. Просто коли ми говоримо $f\left(x \right)$, то мова йде, Насамперед, про функції, а коли йдеться про $y$, то найчастіше мається на увазі графік функції. В іншому ж це одне й те саме, тобто похідна в обох випадках вважається однаково.

Складні завдання з похідними

Насамкінець хотілося б розглянути пару складних комбінованих завдань, в яких використовується відразу все те, що ми сьогодні розглянули. У них на нас чекають і коріння, і дроби, і суми. Однак складними ці приклади будуть лише в рамках сьогоднішнього відеоуроку, тому що по-справжньому складні функції похідних чекатимуть на вас попереду.

Отже, остання частина сьогоднішнього відеоуроку, що складається з двох комбінованих завдань. Почнемо з першої з них:

\[\begin(align)& ((\left(((x)^(3))-\frac(1)(((x)^(3)))+\sqrt(x) \right))^ (\prime ))=((\left(((x)^(3)) \right))^(\prime ))-((\left(\frac(1)(((x)^(3)) )) \right))^(\prime ))+\left(\sqrt(x) \right) \\& ((\left(((x)^(3)) \right))^(\prime ) )=3((x)^(2)) \\& ((\left(\frac(1)(((x)^(3))) \right))^(\prime ))=((\ left(((x)^(-3)) \right))^(\prime ))=-3\cdot ((x)^(-4))=-\frac(3)(((x)^ (4))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(3))) \right))^(\prime ))=\frac(1)(3)\cdot \frac(1)(((x)^(\frac(2)(3))))=\frac(1) (3\sqrt(((x)^(2)))) \\end(align)\]

Похідна функції дорівнює:

\[(y)"=3((x)^(2))-\frac(3)(((x)^(4)))+\frac(1)(3\sqrt(((x)^ (2))))\]

Перший приклад вирішено. Розглянемо друге завдання:

У другому прикладі діємо аналогічно:

\[((\left(-\frac(2))(((x)^(4)))+\sqrt(x)+\frac(4)(x\sqrt(((x)^(3)) )) \right))^(\prime ))=((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))+((\left (\sqrt(x) \right))^(\prime ))+((\left(\frac(4)(x\cdot \sqrt(((x)^(3))))) \right))^ (\prime ))\]

Порахуємо кожне доданок окремо:

\[\begin(align)& ((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))=-2\cdot ((\left( ((x)^(-4)) \right))^(\prime ))=-2\cdot \left(-4 \right)\cdot ((x)^(-5))=\frac(8 )(((x)^(5))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac()) 1)(4))) \right))^(\prime ))=\frac(1)(4)\cdot ((x)^(-\frac(3)(4)))=\frac(1 )(4\cdot ((x)^(\frac(3)(4))))=\frac(1)(4\sqrt(((x)^(3)))) \\& ((\ left(\frac(4)(x\cdot \sqrt(((x)^(3)))) \right))^(\prime ))=((\left(\frac(4)(x\cdot) ((x)^(\frac(3)(4)))) \right))^(\prime ))=((\left(\frac(4))(((x)^(1\frac(3) )(4)))) \right))^(\prime ))=4\cdot ((\left(((x)^(-1\frac(3)(4))) \right))^( \prime ))= \\& =4\cdot \left(-1\frac(3)(4) \right)\cdot ((x)^(-2\frac(3)(4)))=4 \cdot \left(-\frac(7)(4) \right)\cdot \frac(1)(((x)^(2\frac(3)(4))))=\frac(-7) (((x)^(2))\cdot ((x)^(\frac(3)(4))))=-\frac(7)(((x)^(2))\cdot \sqrt (((x)^(3)))) \\\end(align)\]

Усі доданки пораховані. Тепер повертаємося до вихідної формули і складаємо разом усі три доданки. Отримуємо, що остаточна відповідь буде такою:

\[(y)"=\frac(8)(((x)^(5)))+\frac(1)(4\sqrt(((x)^(3))))-\frac(7 )(((x)^(2))\cdot \sqrt(((x)^(3))))\]

І на цьому все. То був перший наш урок. У наступних уроках ми розглянемо більше складні конструкції, а також з'ясуємо, навіщо взагалі потрібні похідні.

Обчислення похідної- Одна з найважливіших операцій у диференціальному обчисленні. Нижче наведено таблицю знаходження похідних простих функцій. Більш складні правила диференціювання дивіться в інших уроках:
  • Таблиця похідних експоненційних та логарифмічних функцій
Використовуйте наведені формули як довідкові значення. Вони допоможуть у вирішенні диференціальних рівняньта завдань. На малюнку, в таблиці похідних простих функцій, наведена "шпаргалка" основних випадків знаходження похідної у зрозумілому для застосування вигляді, поряд з ним дано пояснення для кожного випадку.

Похідні простих функцій

1. Похідна від числа дорівнює нулю
с = 0
Приклад:
5 '= 0

Пояснення:
Похідна показує швидкість зміни значення функції зміни аргументу. Оскільки число ніяк не змінюється за жодних умов - швидкість його зміни завжди дорівнює нулю.

2. Похідна змінноїдорівнює одиниці
x' = 1

Пояснення:
При кожному збільшенні аргументу (х) на одиницю значення функції (результату обчислень) збільшується на цю саму величину. Таким чином, швидкість зміни значення функції y = x точно дорівнює швидкості зміни значення аргументу.

3. Похідна змінної та множника дорівнює цьому множнику
сx' = с
Приклад:
(3x)' = 3
(2x)' = 2
Пояснення:
В даному випадку, при кожній зміні аргументу функції ( х) її значення (y) зростає в зразів. Таким чином, швидкість зміни значення функції по відношенню до швидкості зміни аргументу точно дорівнює величині з.

Звідки випливає, що
(cx + b)" = c
тобто диференціал лінійної функції y=kx+b дорівнює кутовому коефіцієнтунахилу прямий (k).


4. Похідна змінною за модулемдорівнює частці цієї змінної до її модуля
|x|"= x / | x | за умови, що х ≠ 0
Пояснення:
Оскільки похідна змінної (див. формулу 2) дорівнює одиниці, похідна модуля відрізняється лише тим, що значення швидкості зміни функції змінюється на протилежне при перетині точки початку координат (спробуйте намалювати графік функції y = | x | і переконайтеся в цьому самі. Саме таке значення і повертає вираз x/|x|.< 0 оно равно (-1), а когда x >0 – одиниці. Тобто при негативних значенняхзмінної х при кожному збільшенні зміні аргументу значення функції зменшується на таке саме значення, а при позитивних - навпаки, зростає, але точно на таке ж значення.

5. Похідна змінної у ступенідорівнює добутку числа цього ступеня та змінної до ступеня, зменшеної на одиницю
(x c)" = cx c-1, за умови, що x c і сx c-1 визначені а з ≠ 0
Приклад:
(x 2)" = 2x
(x 3)" = 3x 2
Для запам'ятовування формули:
Знесіть ступінь змінної "вниз" як множник, а потім зменшіть самий ступінь на одиницю. Наприклад, для x 2 - двійка виявилася попереду ікса, та був зменшена ступінь (2-1=1) просто дала нам 2х. Те саме сталося для x 3 - трійку "спускаємо вниз", зменшуємо її на одиницю і замість куба маємо квадрат, тобто 3x2. Трохи “не науково”, але дуже просто запам'ятати.

6.Похідна дроби 1/х
(1/х)" = - 1 / x 2
Приклад:
Оскільки дріб можна подати як зведення в негативний ступінь
(1/x)" = (x -1)" , Тоді можна застосувати формулу з правила 5 похідних таблиці
(x -1)" = -1x -2 = - 1 / х 2

7. Похідна дроби зі змінним довільним ступенему знаменнику
(1 / x c)" = - c/x c+1
Приклад:
(1/x2)" = - 2/x3

8. Похідне коріння(Похідна змінної під квадратним коренем)
(√x)" = 1 / (2√x)або 1/2 х -1/2
Приклад:
(√x)" = (х 1/2)" означає можна застосувати формулу з правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Похідна змінної під коренем довільного ступеня
(n√x)" = 1 / (nn√xn-1)



Розповісти друзям